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Abstract 

The North Atlantic Landscape Conservation Cooperative (NALCC) contracted Downstream Strategies (DS) 

to perform aquatic habitat assessments for the Northeast United States. Part of this project included 

creating predictive models for estuarine areas. Winter flounder were selected as the species to be 

modeled for this pilot study, beginning with a model of Narragansett Bay. After learning from that effort, 

a separate predictive habitat model for winter flounder was performed on Long Island Sound. 

This document describes the process used to create a modeling framework for these assessments, details of 

the habitat assessments, and a discussion of the lessons learned that may aid future similar efforts. We 

created models with predictive accuracy similar to other estuarine predictive habitat models. We also 

found that the relationships between habitat and winter flounder described by our predictive models were 

generally corroborated by previous literature. We also note the limitations of each model and suggest 

possibilities for overcoming these in future efforts. 

The data and modeling results from this assessment will be incorporated into a web-based decision 

support tool. This tool will enable users to visualize and download data and model outputs and establish 

conservation priorities based on user-defined ranking criteria. Combined, the modeling results contained 

within this report along with the publically accessible web application will improve public awareness of 

conditions of the modeled estuaries and empower resource managers to implement scientifically-defensible 

conservation actions. The web tool can be accessed here: www.fishhabitattool.org.

http://www.fishhabitattool.org/
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Project Background 

Introduction 
Since 2012, Downstream Strategies (DS) has produced 35 distinct predictive models for several Fish Habitat Partnerships 

(FHP) across the United States1. These models utilized widely-available landscape variables (e.g. land use, geology, 

precipitation) as predictors for instream aquatic responses such as presence of certain guilds or species of fish. After careful 

consideration of strengths and weaknesses compared to other statistical methods, Boosted regression tree (BRT) models 

were selected as the predictive statistical models for these analyses. These models created a broad and unique 

understanding of the link between terrestrial and aquatic health, and allowed for the quantification of stressors and natural 

habitat quality for each response. 

Based on this work, DS was contracted by the North Atlantic Landscape Conservation Cooperative (NALCC) to perform 

habitat assessments for inland and estuarine/coastal areas within the NALCC region (Figure 1). The goal of the project was 

to build from successes in modeling inland aquatic species and to customize the existing modeling framework to be 

applicable to modeling coastal species. Our approach was driven by collaboration with stakeholders throughout the entire 

project. Stakeholders determined the endpoint, scale, and area of focus for the models. Stakeholders also reviewed data, 

methods, and results at all stages of the project and provided feedback—based on local knowledge and expertise—to 

ensure the project outcomes met the needs of stakeholders. 

This report documents the workflow and outcomes from the coastal modeling aspect of the NALCC Aquatic Assessment 

project. Details of the inland and diadromous modeling efforts will be summarized in separate reports. 

                                                 
1 Example report: http://www.northatlanticlcc.org/projects/downstream-strategies-project/public-working-documents/example-report-habitat-

modeling-report-for-the-ohio-river-basin-and-southeast-aquatic-resources-partnerships 
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FIGURE 1. STUDY AREA 

 

Pilot Model Overview 
The primary goal of these habitat assessment models was to assess habitat for specific biological endpoints in a consistent 

framework that could be applied to other endpoints developed as part of similar future efforts. It is important to note that 

these models are dissimilar from traditional marine stock assessments, see Previous Coastal Assessment Efforts section for 

more details. In addition to the habitat assessment, the team was tasked to produce results that could be integrated into the 

existing decision support tool. Through contracts with the USFWS, DS has created a web-based decision support tool that 

allows users to query, rank, and interact with varying levels of data from similar aquatic assessments. The data produced 

as part of these assessments will be incorporated into this tool. 

Care was taken to engage and pursue the proper stakeholders throughout this project. Along with the NALCC project 

officer, DS worked to coordinate with a team of researchers, planners, scientists, and restoration experts for North Atlantic 

aquatic species. To begin, a group of core project coordinators were selected. The estuarine/coastal coordinators included 

Emily Greene, Atlantic Coast Fish Habitat Partnership (ACFHP) Coordinator; Caroly Shumway, Merrimack River Watershed 

Council; and Julie Devers, USFWS. Following her departure from the position, Emily Greene was replaced with the new 

ACFHP Coordinator, Lisa Havel. 

The project team worked with these stakeholders to develop a methodology that was consistent with the goals of the 

project and its end-users. DS first examined and researched existing efforts for assessing and modeling coastal and 

estuarine habitat. Using this information and input, we developed a framework—in collaboration with stakeholders—that 

built upon existing efforts and precedent to establish the coastal and estuarine methods.  

We worked with the NALCC coordinators to rank and prioritize potential species of interest for our modeling efforts. We 

examined state and federal priority species lists and ranked species based on the number of plans in which they were 

included. Once a small list of priority species for in-depth modeling was determined, we began analyzing data 
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availability. It was at this point that winter flounder (Pseudopleuronectes americanus) was selected as the pilot species to 

model estuarine environments. Other estuarine species are listed on more state and federal plans, but winter flounder are 

a well-studied, recreationally- and commercially- important species in the Northeast, resulting in good coverage and 

quality of available data. After several iterations of stakeholder input, feedback, and review we determined that the pilot 

model for winter flounder should be carried out in a single data-rich estuary, Narragansett Bay of Rhode Island and 

Massachusetts (Figure 3). 

Following the establishment of these decisions, a technical review team was established. This team consisted of winter 

flounder researchers and biologists with experience in the North Atlantic, many of whom were intimately familiar with the 

Narragansett Bay population. Table 1 lists the review team for the Narragansett Bay model.   

TABLE 1. NARRAGANSETT BAY TECHNICAL REVIEW TEAM 

Review Team Organization Position 

Kristan Blackhart NOAA/NFHP NFHP Habitat Assessment 

Steven Correia MADMF Environmental Analyst 

Christopher Deacutis RIDEM Supervisory Environmental Scientist 

Julie Devers USFWS Fish Biologist, ACFHP Science and Data Committee 

Mark Gibson RIDEM Deputy Chief of Marine 

Emily Greene ACFHP/NOAA Former Coordinator/Marine Habitat Outreach Specialist 

Lisa Havel ACFHP Coordinator 

Vincent Manfredi MADMF Aquatic Biologist 

Moe Nelson NOAA (NOS) Marine Biologist, ACFHP Science and Data Committee 

Chris Powell RIDEM Retired, Vice Chair, ACFHP Steering Committee 

Michael Scherer Normandeau Associates Vice President 

Eric Schneider RIDEM Principal Marine Fisheries Biologist 

Scott Schwenk NALCC Science Coordinator 

George Shuler TNC Director, Conservation Science and Practice 

Caroly Shumway MRWC  Executive Director, Chair, ACFHP Science and Data Committee 

David Stevenson NOAA (NMFS) Marine Habitat Resource Specialist, ACFHP Science and Data Committee 

Howard Townsend NOAA (NMFS)  Ecological Modeler 

Once the initial model for Narragansett Bay was finalized, there was interest from the coordinators to utilize the lessons 

learned and apply a similar model to another estuary with abundant data. Long Island Sound (LIS) was chosen for this 

effort, as there was ample data collected on winter flounder. In addition to many of the reviewers listed in Table 1, Penny 

Howell, Marine Fisheries Biologist with the CTDEEP and Dawn McReynolds, Marine Habitat Section Head with the NYSDEC 

provided data and review of the LIS model. The details of this assessment are described below in the section named “Long 

Island Sound Model.” 

Previous Coastal Assessment Efforts  
Traditionally, stock assessments have been used to examine population trends for coastal fishes. Stock assessments based 

on recreational and commercial landings and survey catch rates broadly indicate population trends and relative 

abundance, but are insufficient for drawing inferences about habitat quality or fine-scale spatial distribution. For this 

habitat assessment we aimed to assess aquatic habitat at a finer scale than has generally been performed using stock 

assessments, and as such, we examined efforts that focused on estuarine or coastal assessments of fish and data relevant to 

the North Atlantic.  

NOAA compiled information and mapped “Essential Fish Habitat” (EFH) for many coastal fish species by life stage (eggs, 

larvae, juvenile, adult) within the study area, but this information was very coarse scale (10 minute grid), and was focused 
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on off-shore habitats rather than estuaries (NOAA. 2010). The source documentation for this effort described life history 

and habitat characteristics of each species (including winter flounder2) in detail from existing literature (Pereira et al 

1999). Winter flounder move inshore during winter and early spring where they spawn. The newly hatched flounder stay 

inshore in very shallow waters for up to one year, before migrating offshore with the seasonal adult migration. Migration 

of adults is generally triggered by temperatures reaching 15° C, but movements have also been tied to food availability, 

with offshore migrations occurring at lower temperatures if food is scarce, and at higher temperatures if food is abundant. 

Young of year (YOY) winter flounder are more tolerant of lower salinities and dissolved oxygen levels and are less 

photonegative than year-one and adult winter flounder. These characteristics allow YOY winter flounder to inhabit shallow, 

warm inshore areas. As their temperature, salinity, and light tolerances change with age, it likely drives the transition of 

year one and older fish to deeper and cooler water. 

The Nature Conservancy’s Northwest Atlantic Marine Ecoregional Assessment3 (NAMERA) also compiled a great deal of 

information on coastal communities (Greene et al. 2010). Most of the data described physical habitat, chemistry, and 

oceanography. Much of these data proved useful as predictor data for our assessment, but detailed information on fish 

species was not present in the NAMERA assessment. NAMERA did analyze some data on marine fishes to pinpoint critical 

habitat for selected species, similar to the NOAA Essential Fish Habitat assessment. NAMERA chose to analyze data by 

season rather than by life stage, but also utilized a 10-minute grid for much of the analysis, and again focused on marine 

waters rather than inshore estuaries for the fish assessments. The DS assessment goal was to address potential inshore 

stressors, such as impervious surfaces, outfalls, and/or hardened shoreline at a fine (intra-estuary) scale. By focusing the 

assessments on estuaries rather than offshore areas, we intended to interrogate and understand processes within estuaries 

in order to specifically define relationships between fish populations and anthropogenic stressors in the watersheds of the 

estuaries. While the NAMERA fish assessment was useful for more regional-scale planning and for pinpointing critical 

offshore habitats, it was not designed in a way to answer our research questions. 

The National Fish Habitat Action Plan’s Coastal Assessment4 focused on inshore estuaries nationwide rather than marine 

habitats (Greene et al. 2015). The initial assessment focused on scoring distinct estuaries by their overall health as defined 

by existing physical and chemical datasets; it did not directly incorporate biological information into the estuarine health 

scores. A second pilot study is currently underway in the Northern Gulf of Mexico that incorporates predictive modeling 

and aquatic species prevalence to further define estuary health (NOAA 2013). This approach more closely resembles the 

desired product from this project, but the scale of the assessment is still coarse and provides predictions of stressors and 

conditions at the estuary-wide scale. This methodology is still under development and is intended to be utilized as a 

framework to be applied regionally for all US estuaries. This regional effort with estuary-wide prioritization is providing 

useful results, but is still not at a resolution fine enough for intra-estuary assessments, which is the desire for the DS 

assessment. 

Framework Development 
This project’s goal was to build upon the modeling framework developed by DS for inland aquatic modeling5. DS’s inland 

aquatic models were developed for numerous Fish Habitat Partnerships (FHPs) throughout the Midwest and were funded by 

the United States Fish and Wildlife Service (USFWS). These assessments utilized the National Hydrography Dataset (NHD) 

and the NHD Plus (Horizon Systems 2010), a supplemental geospatial hydrologic dataset built on top of the NHD. These 

data include discrete catchment polygons that delineate the local drainage area for each specific stream segment. These 

catchments were utilized as our modeling unit, and predictor data were summarized within each catchment. Response data 

were likewise summarized within catchments to create our predictive models, the results of which were extrapolated to all 

catchments within the defined study areas.  

                                                 
2 http://www.nefsc.noaa.gov/nefsc/publications/tm/tm138/tm138.pdf 
3 https://www.conservationgateway.org/ConservationByGeography/NorthAmerica/UnitedStates/edc/Documents/namera-phase1-
fullreport.pdf 
4 http://csis.msu.edu/sites/csis.msu.edu/files/NFHAP2014.pdf 
5 http://midwestfishhabitats.org/resources/Report 
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DS created a working methodology for the winter flounder model that was based on the DS inland aquatic modeling effort 

and modified to meet the geographic needs of an estuarine model and the requirements defined during several iterations 

of stakeholder input and research. This methodology was presented to, and accepted by the stakeholder group. This 

methodology was used as the framework for all coastal and estuarine modeling efforts for the NALCC project. The process 

utilized to formulate this framework is described below. Details for specific modeling efforts and the data utilized for each 

will be described in more detail within their respective sections.  

DS utilized boosted regression trees (BRT), a machine learning statistical method, in the development of inland assessments. 

This method was selected after careful review of many statistical methodologies during previous projects for the USFWS. 

DS staff and partners, along with the stakeholders for the FHP assessments, decided upon BRT over competing 

methodologies after comparing and contrasting the strengths and weaknesses of each. BRT models combine decision trees 

and boosting methodologies, which often result in better cross-validated models than other methods (Elith et al., 2006). 

Decision trees are advantageous because (1) they can incorporate any type of predictor data (binary, numeric, 

categorical); (2) model outcomes are unaffected by differing scales of predictors; (3) irrelevant predictors are rarely 

selected; (4) they are insensitive to outliers and non-normalized data; (5) they can accommodate missing predictor data; 

and (6) they can automatically handle interactions between predictors (Elith et al., 2008). The boosting algorithm used by 

BRT improves upon the accuracy of a basic regression tree approach by following the idea that averaging many models 

offers efficiency over finding a single prediction rule that is highly accurate (Elith et al., 2008). BRT also runs quickly 

compared to other robust methods such as Bayesian modeling, which allows for efficient re-runs of models to forecast 

scenarios where predictor variables are manipulated. This was a key factor as it also allows for the creation of “on-the-fly” 

scenario-based decision support tools. 

Given the success of the DS inland assessment and the efficiencies of utilizing an existing framework, we proposed to 

transfer the basic framework from the inland assessment to a marine ecosystem, which the stakeholders ultimately 

approved.  Prior to this, we researched marine modeling and designed a modeling framework that utilized a BRT 

predictive model with a different geographic foundation for designating modeling units.  

Dutil et al. (2013) described a process where the authors used generalized linear models and geospatial analyses to find 

relationships between three marine fish species in the Gulf of St. Lawrence in order to supplement existing sampling data 

for the purpose of habitat conservation, management, and recovery. They utilized a square grid pattern to define distinct 

modeling units within their study area and summarized physical habitat and fish sample information (trawl surveys) within 

those square modeling units. This methodology was similar to DS’s existing inland assessment methodology in that habitat 

variables within distinct units were summarized and related to existing fish sample data. Although the statistical approach 

differed, the generalized framework was applicable as a basis for transferring the inland assessment modeling 

methodology to the marine environment, where a gridded overlay of marine environments would be utilized in place of the 

catchments used in the inland assessment. 

Several other studies have used similar methodologies. Best et al. (2012) utilized a similar approach to create models that 

would predict probability of occurrence for marine mammals in the Gulf of Mexico and United States’ east coast. This 

approach focused on marine mammals rather than fishes, but nonetheless was an example of utilizing habitat and 

environmental data to predict the status of mobile animals in marine environments. Young et al. (2010) used variable-sized 

square grids and generalized linear models (GLM) to predict rockfish probability of occurrence off the coast of California. 

Juntunen et al. (2012) used Bayesian models to predict species distribution and biomass for multiple marine species in the 

Baltic Sea using a 2km square grid as the modeling unit. Hardy et al. (2011) utilized several machine learning statistical 

procedures to predict presence, abundance, and biomass of snow crab (Chionoecetes opilio) in Alaskan waters. This is 

certainly not an exhaustive review of predictive models from marine environments, but does indicate the applicability of 

several different predictive modeling methods for several types of marine animals in various settings. 

Leathwick et al. (2006) used boosted regression trees to predict species richness of demersal marine fish near New 

Zealand. They also compared boosted regression trees to generalized additive models (GAM), and found that BRT 
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“substantially” outperformed the traditional GAM model, and that using environmental variables as predictors was 

effective in the prediction of demersal fish richness. 

While the efforts above used mainly square grids, hexagonal grids have also been used in marine applications (James et 

al. 2005, Read et al. 2010). When evaluating hexagons for conservation, they are more effective than squares because 

they can be arranged in a more spatially compact manner, which results in less superfluous planning units (Nhancale and 

Smith 2011).  

We proposed to the stakeholder group to use the basic statistical methodology (BRT) from the DS inland assessment, 

coupled with a hexagonal grid to define the individual modeling units within our analysis. This methodology coupled the 

efficiencies of utilizing an existing framework with the functional advantages of BRT and the spatial efficiency of a 

hexagonal grid system while not straying from established methodologies used for other predictive models in marine 

systems. This framework proposal was accepted by the stakeholder group after explanation and review. 

A 1km2 size was chosen by the stakeholders and review team as the smallest unit of area at which estuarine management 

takes places in inshore areas. Nhancale and Smith (2011) noted that small planning units were more efficient, and as such 

we opted to utilize a smaller unit rather than larger units because data and results could be aggregated within larger units 

of management after analyses if so desired. We used “Create Hexagon Tessellation” geoprocessing package6 within 

ArcGIS 10 to create 1km2 hexagons for the entire NALCC modeling area. The tool automatically assigned each hexagon a 

unique identifier. Habitat data such as depth, substrate, distance to shore, temperature, latitude, etc. were summarized for 

each hexagon and used as predictor variables.  

Response data in the form of trawl surveys and/or seine surveys were used to characterize responses of marine species 

throughout the defined study areas. These response data were assigned to a discrete hexagon. Details describing the 

source of response data and how the response data were processed for each effort can be found in the description of 

each model. 

For hexagons where both predictor data and response data were available, those datasets were joined based on the 

unique hexagon identifier. The resulting dataset was used to create a predictive model that allowed for the 

characterization of the fish response for all hexagons within the study area. 

Statistical Approach 
Boosted Regression Trees (BRT), a machine-learning statistical technique, average the results from hundreds to thousands of 

individual decision trees in order to improve model accuracy (Elith et al. 2008). Figure 2, below, adapted from Elith et al. 

2008, shows an example tree with two predictor variables (X1 and X2), splits points t1, t2, etc, and a response Y. The 

bottom figure illustrates the prediction surface of the example tree. 

The BRT output included a list of the predictor variables used in the model ordered and scored by their relative 

importance. The relative importance values are based on the number of times a variable is selected for splitting, weighted 

by the squared improvement to the model as a result of each split, and averaged over all trees (Friedman and Meulman, 

2003). The relative influence score is scaled so that the sum of the scores for all variables is 100, where higher numbers 

indicate greater influence.  

We utilized the R software package and ‘gbm’ package to create the BRT models , along with source code from Elith et. 

al’s (2008) supplemental materials. We utilized the default settings for model building for most options, including using a 

10-fold cross validation procedure and bag fraction = 0.75. Tree complexity (interaction depth) and learning rate 

(contribution of each tree added to the model) were set individually for each model, depending on data structure and 

model performance. 

                                                 
6 http://www.arcgis.com/home/item.html?id=03388990d3274160afe240ac54763e57 
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The BRT output also contained quantitative information on partial 

dependence functions that was plotted to visualize the effect of each 

individual predictor variable on the response after accounting for all other 

variables in the model (see Figure 6). Similar to the interpretation of 

traditional regression coefficients, the function plots are not always a 

perfect representation of the relationship for each variable, particularly if 

interactions are strong or predictors are strongly correlated. However, 

they do provide a useful and objective basis for interpretation (Friedman, 

2001; Friedman and Meulman, 2003, Elith et al. 2008).  

Each partial dependence plot illustrates the general relationship between a 

single predictor variable and the response variable. The method used to 

create these function plots was described in detail in Friedman (2001). 

Generally speaking, the influence each variable has on the response is 

calculated when holding all other variables in the model consistent, or 

“integrating” them out. The predictor variable is plotted across the x-axis 

and the marginal effect on the response is plotted on the y-axis. These 

plots cannot be used to precisely indicate the exact change in the 

response at varying predictor levels, but is useful to assess the general 

relationship between predictors and the response, especially for 

understanding the directionality of each relationship. 

Residuals were analyzed to more fully understand the strengths and shortcomings of the model predictions. The residuals 

are a measure of the difference in the measured and modeled values (measured value minus modeled value). Negative 

residuals indicate overpredictions (predicting higher values than are true), while positive residuals indicate underpredictions 

(predicting lower values than are true).  

We created and examined plots to compare residuals against predictor values and fitted vales. These plots were used to 

understand the consistency of predictions and to visualize what types of conditions were predicted well, overpredicted, or 

underpredicted by the model. A dashed line representing a residual value of zero (perfect model fit) is also shown. A loess 

line was also plotted to show the general trend of the plotted points (solid line). A loess line that closely matched the 

dashed line would indicate that the model equally over- and under-predicts values across the range of the predictor or 

fitted value.  

Additional plots that show the square root of the absolute value of the residuals were created to visualize the magnitude of 

predictive error across the range of predictors and fitted values. Residuals were also mapped in order to analyze spatial 

patterns of omission and commission, which could highlight regions where the model is performing well or poorly or could 

suggest missing explanatory variables. 

Narragansett Bay Model 

Introduction 
Narragansett Bay is a 380 km2 estuary within Rhode Island and Massachusetts (Figure 3). Winter Flounder within the bay 

have declined over recent years and are of importance for both commercial and recreational fisheries. Narragansett Bay 

is well studied, and there are several datasets containing many decades of seine and trawl data on winter flounder within 

the bay. For these reasons, it was chosen by the project coordinators as the site for the pilot model and framework 

development effort. 

FIGURE 2. EXAMPLE DECISION TREE AND 

PREDICTION SURFACE (FROM ELITH ET AL. 
2008) 
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Methods 

Study Area 
The modeling hexagons (n = 647) for the Narragansett Bay study area were extracted using NOAA shoreline to delineate 

the bay. Figure 3 below illustrates the modeling hexagons for Narragansett Bay, and delineates the open water hexagons 

(the outline of which do not intersect shoreline), and the shoreline hexagons.  

FIGURE 3. MODELING HEXAGONS 

 

Response Data 
Winter flounder are a migratory species, but are known to stay within Narragansett Bay after hatching until 

approximately age-1 before their first out-migration to the open ocean. To meet the goals of the stakeholders and 

partners, we chose to focus on only young-of-year (YOY) and age-1 winter flounder. This would allow for us to find 

relationships between habitat conditions solely inside of the study area and YOY flounder that have not been exposed to 

conditions outside of the study area. Assessment or inclusion of adult winter flounder would likely indicate habitat 

preferences and areas of high value to the population, but may not have been as appropriate to assess anthropogenic 

stressors to the natal portion of the population. 

Eric Schneider (RIDEM) performed analysis of seine and trawl survey data to determine length threshold to utilize as an 

upper criterion for flounder considered within this study. After plotting number at length and proportion of age at length, 
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he determined that an upper length of 220 millimeters (mm) total length was a reasonable threshold to determine fish less 

than age-2. Age-1 and YOY flounder are assumed to have not yet migrated out of Narragansett Bay where they could 

have potentially been impacted or influenced by factors outside of the Narragansett Bay study area. Specifically, Eric 

Schneider found that the threshold of 220 millimeters would include 100% of YOY, 79% of age-1 fish, and only 13% of 

fish greater than age-1. More details of this analysis can be found in Appendix C. 

Data from both seine and trawl surveys were compiled for Narragansett Bay from two main sources, Rhode Island Division 

of Fish and Wildlife (RIDFW) and Normandeau Associates. The latter was tasked with collecting samples for power plants 

in the Mount Hope Bay (MHB) portion of Narragansett Bay, while RIDFW provided data for the majority of the remainder 

of the study area (McNamee, 2008-2013; Powell, 1988-2007). The RIDFW seine samples were concentrated in the upper 

bay to focus juvenile finfish sampling in closer proximity to the nursery habitat more prevalent in the upper bay. 

Initially, all data sources (both seine and trawl) were used to compile winter flounder densities for the response dataset, but 

due to potential bias and capture efficiency differences between seine and trawl gear, only seine data were utilized for 

the final model. Trawl data is collected in open water, generally away from shoreline areas. Seine data are collected 

immediately adjacent to shore. While not quantified specifically for the gear used in this analysis, it is commonly 

understood that there are differences in capture efficiency and size selectivity between different gear types. Seines 

generally are more efficient at capturing smaller fish that inhabit shallow areas near shore. Trawls are better at capturing 

larger fish in deeper habitats. Since seines are generally used to target capture of YOY winter flounder, this model utilized 

only the seine data as response data for the final model. Additionally, due to the absence of response data from open 

water hexagons, they were removed from the predictive model, leaving 484 shoreline hexagons that were evaluated for 

this assessment (Figure 3). 

The seine data provided to DS were collected from years 2000 to 2013 for the MHB data and from 1988 to 2013 for the 

RIDFW data. In order to create a temporal match to predictor variables, which were generally created or compiled within 

the last decade, DS suggested using only more recent samples from these datasets. Eric Schneider of RIDFW analyzed 

yearly trends in winter flounder abundance from 1992 – 2013. These trends are shown in Figure 4 for both MHB and 

Narragansett Bay, with the units of mean sampled YOY winter flounder densities from seine surveys. Based on the trends 

evident, it was decided by the review team that using sample data from 2001-2013 would create an approximate 

temporal match with predictor variables and would avoid the abnormally strong year class from 2000, thus gathering 

data from a time period when estimates of abundance were relatively stable. 
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FIGURE 4. WINTER FLOUNDER DENSITY TRENDS 

 

Providers of the seine data provided the number of YOY flounder captured and the estimated area swept per seine haul. 

This allowed us to calculate an estimated YOY flounder density for each sample. For the predictive model, only a single 

response value was required for each hexagon that had data. This required DS to summarize the data within hexagons 

that had more than one sample taken during the 13-year period defined above for the response data. To calculate the 

13-year mean winter flounder YOY density within each hexagon, the total number of YOY winter flounder collected in 

each hexagon was divided by the total area sampled in that hexagon across all sampling events. Figure 5 shows the study 

area and the mean YOY winter flounder density for the hexagons where seine samples were taken during the specified 

13-year time period. There were a total of 41 hexagons with response data (a relatively small sample size), and they 

were geographically skewed, as the samples were more concentrated in the northeastern portion of the study area. 

Before modeling, the calculated densities that were used as the response variables were analyzed for normality, and were 

show to be non-normally distributed. A log transformation was utilized to create a more normalized distribution of response 

data. This transformation improved the predictive ability of the BRT when analyzing cross-validated statistics from 

preliminary models using transformed and untransformed response datasets. 
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FIGURE 5. RESPONSE DATA 

 

Predictor Data 
DS and the review team compiled aquatic and nearshore terrestrial predictor data from multiple sources. Each predictor 

variable was summarized for each hexagon within Narragansett Bay. Table 2 below shows a summary of all predictor 

data sources that were utilized. A full list of all processed predictor variables considered in the final model and extracted 

from the sources listed in Table 2 can be found in Appendix A. Additionally, DS and the review team pursued additional 

predictor data that were unable to be utilized in the modeling effort, mainly due to the geographic limitations (i.e. the 

data did not cover the entire study area). A summary of these data sources that were examined, but unable to be used for 

modeling, can be found in Appendix B . 

TABLE 2. PREDICTOR VARIABLES 

Predictor Variable Source 

Depth/Bathymetry NOAA CSC 

Eelgrass/SAV URI 

Estuarine habitat type RIDEM 
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Hardened shoreline RIDEM 

Impervious surfaces NLCD 

NPDES outfalls RIDEM 

Nutrient levels NOAA 

Salinity zones NOAA 

Substrate composition Brown University 

Substrate composition TNC NAMERA 

Note: Substrate data from Brown University had better resolution, but did not cover  

the entirety of the study area, and in those areas the TNC data was utilized. Both data  

sources had the same structure which allowed us to combine them.

 

Predictive Modeling 
The BRT model was created using 100% of the available response data because of the limited amount of response data (n 

= 41). The resulting model was then extrapolated to all unsampled shoreline modeling hexagons within Narragansett Bay. 

Because the response variable was log-transformed before the model was run, all extrapolated values were first back-

transformed to number of fish per 100m2.  

Plots of fitted values and predictor variable values versus residual values were created with a loess line plotted for the 

data points and a dashed line at zero residual. We also mapped residuals for each of the 41 hexagons where residuals 

were calculated. The values are shown by standard deviation of the residuals, which allows for a quick visual interpretation 

of areas that contain the most extreme overpredictions (negative residuals) or underpredictions (positive residuals). 

Results 

Model Details 

Predictive Performance 
The final model was comprised of 1,450 trees and used a learning rate of 0.005 and tree complexity = 1. The model had 

a CV correlation statistic of 0.685±0.092 and it explained 60.5% of the deviance in the response data.  

Variable Influence Accuracy  
Table 3 shows the predictor variables used in the model ordered and scored by their relative importance. The salinity zone 

variable was the single most important predictor variable in the model with a relative influence of 24.7%. This was a 

three-zone variable, with each hexagon classified as either being Tidal Fresh Zone, Mixing Zone, or Ocean Zone. 

TABLE 3: RELATIVE INFLUENCE OF ALL VARIABLES IN THE FINAL NARRAGANSETT BAY WINTER FLOUNDER MODEL 

Variable Description Relative Influence 

Salinity zone  24.7 

Percent of aquatic habitat as beach 18.3 

Percent of aquatic habitat as salt marsh 17.7 

Mean total phosphorus within hexagon 12.7 

Distance to nearest NPDES outfall 9.8 

Mean water depth within hexagon 7.2 

Distance to nearest deep water (> 33 feet) 6.0 

Distance to nearest hardened shoreline 2.0 

Percent of benthic habitat as sand 1.7 
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Variable Functions 
These plots show the marginal effect on the response variable (log(abundance)) on the y-axis as the predictor variable (x-

axis) changes, which is the influence each variable has when holding all other variables in the model constant. It cannot be 

used to precisely indicate the exact change in the response at varying predictor levels, but is useful to assess the general 

relationship between predictors and the response, especially for understanding the directionality of each relationship. 

Additional details about how these plots were created are provided in the Statistical Approach section. The function plots 

for the nine variables in the winter flounder model (Table 3) are illustrated in Figure 6. 
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FIGURE 6: FUNCTIONAL RESPONSES OF THE DEPENDENT VARIABLE TO INDIVIDUAL PREDICTORS OF WINTER FLOUNDER 

 

NOTE: SEE APPENDIX A FOR DETAILED DESCRIPTIONS OF VARIABLES.
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Predicted Outcomes 
Winter flounder abundance was extrapolated for all 484 hexagons that intersected the shoreline using the BRT model. 

After the values were back-transformed to fish/100m2, the predicted abundance ranged from 0.22 to 9.95 fish/100m2. 

The mean predicted abundance was 2.05 fish/100m2. There were 229 hexagons with a predicted abundance of greater 

than 1.00 fish/100m2, with the majority of these hexagons occurring in the northern portion of the bay. These results are 

mapped in Figure 7.  

FIGURE 7. PREDICTED YOY WINTER FLOUNDER ABUNDANCE. 

 

Residuals Analysis 
Figure 8 shows the fitted values (predicted log(density) value for hexagons that had response data) versus the residual 

values (8a) and the fitted values versus the square root of the absolute value of the residuals (8b). Figure 8a shows that the 

model may be overpredicting at very low densities and underpredicting at medium densities. The plot on the right, plot (b), 

shows that the magnitude of residuals decreases as predicted density increases, and may indicate that the model is less 

accurate at predicting lower densities. 
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FIGURE 8. FITTED VALUE RESIDUALS. 

 

Note: Plot (a) indicates fitted values versus residuals, plot (b) indicates fitted values versus the square root of the absolute value of the residuals. 

We plotted the residuals against the predictor variables in a plot similar to Figure 8(a) above. These are shown in Figure 

9, and the plots are ordered to correspond to their relative influence within the model (see Figure 6). We also plotted the 

value of each predictor variable against the square root of the absolute value of the residuals for a comparison similar to 

Figure 8(b) above. These plots are shown below in Figure 10, and show the magnitude of residuals at differing values of 

predictor variables. These plots all have a loess line plotted to indicate trends, but with the small sample size available, it is 

possible that the loess lines are more sensitive to extreme values than the predicted values from the BRT model. 

These plots indicate that the model is better at predicting some habitat types than others. Shallow areas in the mixing 

salinity zone and moderate to high phosphorus levels predicted well, but deep habitats in the ocean salinity zone and low 

phosphorus levels were all overpredicted. The residual plots also indicate that areas with high levels of sand substrate are 

underpredicted compared to low and moderate levels of sand substrate. The plot of percent beach habitat has one 

extreme value that skews the tail of the trend line and would indicate an overprediction at high proportions of sand 

substrate, but the trend where the majority of data exists doesn’t show a strong pattern of over- or under-prediction. 

We also mapped residuals for each of the 41 hexagons where residuals were calculated (Figure 11) to assess spatial 

patterns of prediction errors.
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FIGURE 9. RESIDUAL PLOTS FOR PREDICTOR VARIABLES. 

 

NOTE: SALINITY ZONE IS BASED ON THREE CATEGORICAL CLASSES RATHER THAN CONTINUOUS VARIABLES PLOTTED THROUGHOUT THE REMAINDER OF THIS FIGURE. 
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FIGURE 10. SQRT ABSOLUTE VALUE RESIDUAL PLOTS FOR PREDICTOR VARIABLES. 

 

Note: SALINITY ZONE IS BASED ON THREE CATEGORICAL CLASSES RATHER THAN CONTINUOUS VARIABLES PLOTTED THROUGHOUT THE REMAINDER OF THIS FIGURE.
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FIGURE 11. MAPPED RESIDUALS 

 

Discussion 
Generally, the distribution of YOY winter flounder as predicted by this model confirmed existing Narragansett Bay 

knowledge. In a similar analysis of Narragansett Bay, Meng et al. (2005) found juvenile winter flounder densities to be 

highest in the upper bay, in areas of high human density and near marsh habitat. These habitat relationships mirror the 

habitat factors that were relevant to the similar distributional pattern of our model, and each one is discussed in more 

detail below.  

The areas with higher YOY winter flounder densities tend to be within the ‘Mixing Zone’ or to a lesser extent the ‘Tidal 

Fresh’ salinity zones. The mechanism for why YOY tend to be found in areas with lower salinities values is not fully 

understood. Some research has shown that salinity gradients in estuaries influence the area of habitat available to YOY 

winter flounder, and that more stenohaline predators such as summer flounder and sea robins are less effective in lower 

salinities (Mark Gibson, personal communication).  

Saucerman and Deegan (1991) found that YOY winter flounder did not move far from likely settlement locations during 

summer, which could cause habitat associations with areas proximal to spawning habitats rather than with preferred 

habitats, but since the size class of winter flounder used in our analysis include both newly settled YOY and larger juveniles, 

it is possible that their distributions represent preferred habitat conditions rather than spawning habitat preference for 
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adult winter flounder. Therefore, it is possible that lower salinities could be actively sought out by the YOY winter flounder 

in our analysis. Stoner et al. (2001) studied smaller size classes of YOY winter flounder in the Mid-Atlantic (25-55 mm, 

which overlaps the lower end of our size range) and found that this size class of winter flounder were associated with 

intermediate salinities (approximately 20 ppt). 

The function plots above (Figure 6) indicate that winter flounder are found in areas that are shallow. This fits current 

knowledge on the habitat preference of YOY winter flounder. The source document for EFH (Pereira et al. 1999) indicates 

that young winter flounder associate with shallow areas, as does Stoner et al. (2001), which showed association of YOY 

winter flounder with depths less than two to three meters, depending on the exact size class of fish. Manderson et al. 

(2004) found that YOY winter flounder likely inhabited shallow habitats as a means of avoiding predation from summer 

flounder (Paralychthys dentatus) and other predators.  

Figure 6 also shows a relationship where higher densities of YOY winter flounder are associated with higher percentages 

of sand substrate. This relationship does not exhibit a high relative influence when compared to other habitat factors in our 

model, but a trend is visible. Howell et al. (1999) found that juvenile winter flounder associated with mud habitats and that 

lower densities were observed in sand habitats in Connecticut embayments, which differs from the trends in our habitat 

relationships. Of note though, Goldberg et al. (2002) found that habitat type associations with YOY winter flounder was 

more variable from system to system, and even from year to year, so the association with sand substrate within 

Narragansett Bay may not be expected to carry through to other estuaries, and could be a factor of local habitat and/or 

prey availability.  

The model also indicated a relationship between urbanization/development and YOY winter flounder abundance. The 

variables indicating mean imperviousness within a 2km buffer of the focal hexagon and distance to nearest hardened 

shoreline both indicate that the more urbanization/development within Narragansett Bay, the higher the density of YOY 

winter flounder likely to be encountered. This confirms the habitat relationships found by Meng et al. (2005), where juvenile 

winter flounder densities in Narragansett bay were in areas of high human population or disturbance. It is important to 

note that this relationship may not be a cause-effect relationship, but rather that development has occurred in areas 

proximal to habitats that are more favorable for YOY winter flounder. The relationships indicate that these developed 

areas are still of importance to winter flounder and should be protected, although they may seem degraded.  

Also of note is the relationship between salt marshes and YOY winter flounder indicated by the model. Within 

Narragansett Bay, salt marshes are a relatively rare habitat type. The relationship between salt marsh and YOY winter 

flounder abundance indicates that within areas where there is some amount of salt marsh habitat, there is also an increased 

likelihood of higher YOY winter flounder abundances, even though this relationship breaks down in hexagons with 

extremely high proportions of salt marsh. The breakdown in that relationship is likely occurring because very high 

proportions of salt marsh is very rare within the modeled data. While this relationship could be causative, we cannot 

definitely draw that conclusion from our analysis This relationship does parallel finds from Meng et al. (2005) where they 

saw highest juvenile winter flounder densities at sites near marshes.  

Lastly, the function plots indicate YOY abundance is higher in areas with less beach habitat, and in areas with higher total 

phosphorus levels. The increased phosphorus may correlate with higher primary productivity, which could result in higher 

food availability for YOY winter flounder. The reduced density expected in areas with increased beach habitat could be a 

habitat association or preference that is evident in the Narragansett Bay population of winter flounder, similar to the 

unique habitat associations described by Goldberg et al. (2002) for distinct systems. Phelan et al. (2001) showed in 

laboratory studies that prey availability would over-ride sediment choice by YOY winter flounder. It is possible that a lack 

of prey for YOY winter flounder in Narragansett Bay beach habitat could be contributing to the lower abundances in 

areas with high beach habitat, but more detailed studies would be needed to confirm that prey availability differences 

was influencing habitat choice or association.   
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Limitations 
Response data was only available for 41 hexagons within Narragansett Bay. While this data was sufficient enough to 

produce a predictive model with reasonable cross-validated accuracy, the amount and distribution of these sites likely 

limited the accuracy of the final model. Having additional data to create the model would result in a more complete 

understanding of the distributional outputs from the model as well as the relationships to habitat.  

Response data were also not collected using randomized locations, and as such it is possible that not all habitats available 

within Narragansett Bay were sampled. This can cause the predictions for habitats outside those represented within the 

response data to be questionable. The habitats selected for the RIDFW sampling were selected because they were 

considered good juvenile finfish habitat and in areas where the sample gear could be used effectively. 

This model required the use of summarized response data. The dataset averaged conditions over the 13-year period 

selected, and as such can only be interpreted as indicative of the generalized conditions across that time frame. Yearly 

variance due to weather, water quality, or cyclical biological interactions is beyond the scope of this analysis. 

Likewise, this model used summarized predictor variables to predict the most likely conditions within a 1-km hexagon. 

Conditions within each hexagon were summarized, so precise conditions at any given location within each hexagon could 

vary significantly from the summarized conditions. Given the scale at which predictor variables were available, the 1-km 

hexagon was deemed appropriate by winter flounder biologists as the most fine-scale management unit given current 

data. As the resolution of predictor variables improves, the scale of analysis can likewise be reduced in order to reduce 

variability within each modeling unit (hexagon). 

Predictor variables were not available or not available at the required resolution for several factors potentially important 

for YOY winter flounder. Water temperatures are known to be important in structuring distribution of winter flounder, but 

within Narragansett Bay, there were no reliable measures of temperature interpolated for the entire study area able to be 

processed in the timeframe necessary for this project. Similarly, salinity is also important to winter flounder, and while we 

were able to use a zonal (categorical) predictor variable, a continuous representation of salinity was not available for this 

effort within Narragansett Bay. After this Narragansett Bay modeling effort was completed, salinity and temperature data 

for the entire northeast was located and acquired. This data came from NECOFS and was utilized for the Long Island 

Sound model. We recommend future projects prioritize the acquisition or processing of continuous complete interpolated 

surfaces of annual or seasonal water quality. 

Relationships found within any predictive model should be interpreted with the results from existing literature. Relationships 

between the response and any predictor variable in these types of models indicate correlation, and caution should be used 

when extrapolating such results as mechanistic or causative. 

Long Island Sound Model 

Introduction 
Long Island Sound (LIS) is a 3,367 km2 estuary that lies between Long Island, New York and Connecticut. (Figure 12). 

Winter Flounder here are of importance for both commercial and recreational fisheries. LIS is well sampled, and there are 

several datasets containing many decades of seine and trawl data on winter flounder within the bay. It was chosen to 

supplement the Narragansett Bay effort because of the data availability and to be able to compare results from the two 

systems. 

Methods 

Study Area 
The one square kilometer modeling hexagons for the LIS study area were extracted using the estuary boundary defined 

within the National Fish Habitat Action Plan Coastal Assessment (National Fish Habitat Action Plan, 2010). Figure 12 below 

shows the 3,756 modeling hexagons for LIS.  
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FIGURE 12. LONG ISLAND SOUND MODELING HEXAGONS 

 

Response Data 
To complement and contrast the response data used during the Narragansett Bay effort, where YOY winter flounder were 

the focal size class of the response, stakeholders and partners chose to focus on all winter flounder sampled by trawl 

surveys. Trawl surveys generally do not target YOY winter flounder, and for our effort all winter flounder collected in trawl 

surveys were used to create the final response dataset. This would allow for us to find relationships between winter 

flounder and areas of high value to the population as a whole. Partners and biologists indicated that late spring (April and 

May) would be the most critical time period to analyze flounder density and to also the time period when salinity and 

temperature may have the most influence on flounder densities. 

Trawl survey data were compiled for LIS from Connecticut Department of Energy and Environmental Protection (CTDEEP) 

for data collected between 2001 – 2013. After removing trawls with potentially erroneous location data (i.e. those trawls 

that were excessively long, or were indicated as crossing land according to start and end locations) and removing samples 

taken outside of April and May, there were 994 unique trawls in the dataset that were then associated to the appropriate 

hexagons. This resulted in a modeling dataset of 525 hexagons, because in many cases multiple trawls were within the 

same hexagon.  

Providers of the trawl data provided the number of flounder captured and the estimated area swept per trawl. This 

allowed us to calculate an estimated flounder density for each sample. For the predictive model, only a single response 

value was required for each hexagon that had data. This required DS to summarize the data within hexagons that had 

more than one sample taken during the 13-year period defined above for the response data. To calculate the 13-year 

mean late spring winter flounder density within each hexagon, the total number of winter flounder collected in each 

hexagon was divided by the total area sampled in that hexagon across all sampling events. Figure 13 shows the study 



 

 

Downstream Strategies | North Atlantic LCC Assessments – Winter Flounder Comprehensive Report –DRAFT 27 

 

area and the mean winter flounder density for the hexagons where samples were taken during the specified 13-year time 

period. 

Before modeling, the calculated densities that were used as the response variables were analyzed for normality, and were 

show to be non-normally distributed. A log transformation was utilized to create a more normalized distribution of response 

data. This transformation improved the predictive ability of the BRT when analyzing cross-validated statistics from 

preliminary models using transformed and untransformed response datasets. 

FIGURE 13. LIS RESPONSE DATA 

 

Predictor Data 
DS and the review team compiled aquatic and nearshore terrestrial predictor data from multiple sources. Each predictor 

variable was summarized for each hexagon within LIS. Table 4 below shows a summary of all predictor data compiled for 

this effort. Some of the variables listed in Table 4 were not utilized within the final predictive model, as some variables 

were removed from the model for redundancy or lack of variability. 

TABLE 4. LIS PREDICTOR VARIABLES 

Predictor Variable Variable Description Source 

Min_depth Minimum depth within hexagon NOAA 

Max_depth Maximum depth within hexagon NOAA 

Mean_depth Mean depth within hexagon NOAA 

Mean_temp Mean April-May bottom temperature, 2006-2009 NECOFS 

Mean_salinity Mean April-May bottom salinity, 2006-2009 NECOFS 

Mean_chlorophyll Mean chlorophyll-a TNC 
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Dist_to_marsh Distance to emergent marsh TNC 

Pct_gravel Percent benthic gravel TNC 

Pct_sand Percent benthic sand TNC 

Pct_silt_mud Percent benthic silt and mud TNC 

Pct_depression Percent depression bottom form TNC 

Pct_low_slope Percent low slope bottom form TNC 

Pct_steep Percent steep bottom form TNC 

Pct_mid_flat Percent mid flat bottom form TNC 

Pct_side_slope Percent side slope bottom form TNC 

Pct_high_flat Percent high flat bottom form TNC 

Pct_high_slope Percent high slope bottom form TNC 

Pct_erosion Percent erosion sediment environment USGS 

Pct_sorting Percent sorting sediment environment USGS 

Pct_deposition Percent deposition sediment environment USGS 

Pct_transport Percent transport sediment environment USGS 

Mean_imperv_2km Mean imperviousness within 2km buffer NLCD 

ABBREVIATION NOTE: NECOFS – NORTHEAST COASTAL OCEAN FORECAST SYSTEM 

Predictive Modeling 
The BRT model was created using all of the response data hexagons (n = 525). The resulting model was then extrapolated 

to all unsampled modeling hexagons within LIS. Because the response variable was log-transformed before the model was 

run, all extrapolated values were first back-transformed to number of fish per 100m2.  

Plots of fitted values and predictor variable values versus residual values were created with a loess line plotted for the 

data points and a dashed line at zero residual. We also mapped residuals for each of the 525 hexagons where residuals 

were calculated. The values are shown by standard deviation of the residuals, which allows for a quick visual interpretation 

of areas that contain the most extreme overpredictions (negative residuals) or underpredictions (positive residuals). 

Results 

Model Details 

Predictive Performance 
The final model was comprised of 1,400 trees and used a learning rate of 0.01 and tree complexity = 1. The model had a 

CV correlation statistic of 0.357±0.023 and it explained 23% of the deviance in the response data.  

Variable Influence Accuracy  
Table 5 shows the predictor variables used in the model ordered and scored by their relative importance. The mean 

salinity variable was the single most important predictor variable in the model with a relative influence of 37.2%, but the 

next variable in terms of relative influence, maximum depth, was nearly as important, at 32.8%. Water temperature and 

bottom characteristics are the next most influential variables, and the only anthropogenic factor (mean imperviousness 

within 2km buffer) included as a predictor was near the bottom of the influential variables, at 2.1% of the relative 

influence on the final model. 

TABLE 5: RELATIVE INFLUENCE OF ALL VARIABLES IN THE FINAL WINTER LIS FLOUNDER MODEL 

Variable Description Relative Influence 

Mean spring salinity  37.2 

Maximum depth 32.8 
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Mean spring temp 14.1 

Percent high flat bottom type 5.0 

Percent sand bottom sediment 4.0 

Percent low slope bottom type 3.0 

Mean imperviousness within 2km buffer 2.1 

Percent gravel bottom sediment 1.7 

Variable Functions 
These plots show the marginal effect on the response variable (log(abundance)) on the y-axis as the predictor variable (x-

axis) changes, which is the influence each variable has when holding all other variables in the model consistent. It cannot be 

used to precisely indicate the exact change in the response at varying predictor levels, but is useful to assess the general 

relationship between predictors and the response, especially for understanding the directionality of each relationship. 

Additional details are provided in the Statistical Approach section on how these plots are calculated. The function plots for 

the eight variables in the winter flounder model (Table 5) are illustrated in Figure 14. 
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FIGURE 14: FUNCTIONAL RESPONSES OF THE DEPENDENT VARIABLE TO INDIVIDUAL PREDICTORS OF WINTER FLOUNDER IN LIS 
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Predicted Outcomes 
Winter flounder abundance was extrapolated for all 3,756  hexagons within LIS using the BRT model. After the values 

were back-transformed to fish/100m2, the predicted densities ranged from 0 to 0.25 fish/100m2. The mean predicted 

abundance was 0.12 fish/100m2. There were 213 hexagons with a predicted abundance of greater than 0.20 

fish/100m2, with the majority of these hexagons occurring in the western or central portion of the bay. These results are 

mapped in Figure 15.  

FIGURE 15. PREDICTED WINTER FLOUNDER ABUNDANCE FOR LIS. 

 

Residuals Analysis 
Figure 16 shows the fitted values (predicted log(density) value for hexagons that had response data) versus the residual 

values (16a) and the fitted values versus the square root of the absolute value of the residuals (16b). Figure 16a shows 

that the model predicts low and moderate densities reasonably well, but indicates that it may underpredict the highest 

densities. Plot (b) shows that the magnitude of residuals increases as predicted density increases, and may indicate that the 

model is less accurate at predicting higher densities. This pattern is also evident when examining the maximum densities 

within the response data map (Figure 13) and the maximum density predicted by the BRT model (Figure 15). It seems that 

the model is unable to relate habitat characteristics to hexagons that have the highest densities of winter flounder, perhaps 

due to localized characteristics which are unaccounted for within the predictor data in this analysis. 
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FIGURE 16. FITTED VALUE RESIDUALS. 

 

NOTE: PLOT (A) INDICATES FITTED VALUES VERSUS RESIDUALS, PLOT (B) INDICATES FITTED VALUES VERSUS THE SQUARE ROOT OF THE ABSOLUTE VALUE OF THE RESIDUALS. 

Similarly, we plotted the residuals against the predictor variables in a plot similar to Figure 16(a) above. These are shown 

in Figure 17, and the plots are ordered to correspond to their relative influence to the model (see Figure 14). We also 

plotted the value of each predictor variable against the square root of the absolute value of the residuals for a similar 

comparison to the one in Figure 16(b) above. These plots are shown below in Figure 18, and show the magnitude of 

residuals at differing values of predictor variables. These plots all have a loess line plotted to indicate trends. 

Analysis of Figure 17 reveals an absence of directional bias, where the model drastically over- or underpredicts 

consistently across the range of predictor variables. The only indication of such predictive bias occurs at low salinity values 

and at high imperviousness values. In both of these scenarios, which are generally rare in the modeled data, the model 

tends to overpredict flounder density at the noted ranges.  

When analyzing the magnitude of residuals values (Figure 18), we can see there are some habitat types that are 

predicted more consistently than others, even if there isn’t directional bias indicated from the plots in Figure 17. Areas with 

lower values for low slope, high flat, gravel, and imperviousness all predict comparatively better than other habitat types, 

while none of the ranges for any of the predictor variables seem to predict especially poorly. 

We also mapped residuals for each of the 525 hexagons where residuals were calculated (Figure 19) to assess spatial 

patterns of prediction errors. This map again indicates the underpredictions of the hexagons containing the highest sampled 

densities of winter flounder.
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FIGURE 17. RESIDUAL PLOTS FOR PREDICTOR VARIABLES. 
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FIGURE 18. SQRT ABSOLUTE VALUE RESIDUAL PLOTS FOR PREDICTOR VARIABLES. 
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FIGURE 19. MAPPED RESIDUALS FOR LIS MODEL 

 

Discussion 
A document by USFWS (2001) synthesized data from multiple research studies on habitat suitability for adult winter 

flounder. They found that adult winter flounder preferred finer-grain bottom habitats, ranging from mud to gravel, with the 

most preferred type being a combination of sand and mud. They also found depth suitability for adult winter flounder was 

best between depths of 0 and 46 meters, while shallower habitats were more suitable for juveniles. Finally, they ranked 

habitat suitability based on salinity and found that the highest suitability for adult winter flounder occurs at 25-35 ppt, but 

that salinities ranging from 5-25 ppt were also acceptable. 

Our model shows that higher densities of winter flounder are associated with salinities between 21 – 29 ppt, depths of 15-

40 meters, and in hexagons with higher percentages of sand substrate and less gravel substrate. These associations within 

our model fit the associations described in the USFWS (2001) report. 

Bottom temperature was also a strong predictor variable in our analysis, and generally warmer temperatures were 

associated with higher densities of winter flounder. Given that temperatures within the study area are all within the 

preferred range of winter flounder at the time modeled (April – May), it is possible that associations with warmer 

temperatures may correlate to food availability. Pereira et al (1999) summarized existing literature by noting that “if 

water temperatures are not limiting over a wide area, winter flounder will move in response to availability of food.” Food 

availability in warmer portions of LIS during early spring could explain the association seen within our model to warmer 

temperatures. 

Our analysis also showed a weak association with imperviousness, with more imperviousness within a two kilometer buffer 

being associated with lower flounder densities. This is contrary to the findings in Narragansett Bay, both from our analysis 

and from Meng et al. (2005). Since areas of high imperviousness occur only in close proximity to shoreline habitats that are 
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generally shallower, the association may not be an indictment of imperviousness as a stressor for adult winter flounder. It is 

possible that preferred habitat for adult winter flounder in LIS naturally occurs in areas away from shoreline areas that are 

susceptible to high development and imperviousness. 

Lastly, our model showed weak associations with certain bottom forms. Flounder density was higher in areas with less “low 

slope” and less “high flat” bottom habitats. Other habitat-association studies have generally focused on substrate type 

rather than bottom form, but it is likely that these have interactive qualities that make interpretation of the associations with 

bottom form difficult. 

Limitations 
It is possible that not all habitats available within LIS were sampled. This can cause the predictions for habitats outside 

those represented within the response data to be questionable. Predictions for habitats that are unable to be sampled by 

trawl gear are likely to have higher error rates than habitat that were represented within the response data. 

This model required the use of summarized response data. The dataset averaged conditions over the 13-year period 

selected, and as such can only be interpreted as indicative of the generalized conditions across that time frame. Yearly 

variance due to weather, water quality, or cyclical biological interactions is beyond the scope of this analysis. 

Likewise, this model used summarized predictor variables to predict the most likely conditions within a 1-km hexagon. 

Conditions within each hexagon were summarized, so precise conditions at any given location within each hexagon could 

vary significantly from the summarized conditions. Given the scale at which predictor variables were available, the 1-km 

hexagon was deemed appropriate by winter flounder biologists as the most fine-scale management unit given current 

data. As the resolution of predictor variables improves, the scale of analysis can likewise be reduced in order to reduce 

variability within each modeling unit (hexagon). 

We compiled the best available predictor data available, but data were not available or were not available at the 

required resolution for all factors potentially important to winter flounder. Water quality factors and sediment 

contamination could not be directly accounted for given available data. The impact from the presence of predators, fishing 

harvest or other biological impacts were also unable to be accounted for in this analysis. The addition of these types of 

factors into future analysis would likely improve their accuracy.  

The model produced here performs poorly when predicting the highest densities of winter flounder. The highest densities 

present in the response data are greater than one fish per 100 square meters. The highest prediction from the model is 

only 0.25 fish per 100 square meters. The factors contributing to the highest densities are likely unaccounted for within our 

set of predictor variables, or the summarization of predictor data to a one square kilometer hexagon is causing variability 

to be lost. The model seems to be more accurate at predicting the difference between very low to moderate densities 

(Figure 16), but because of the inability of the model to pinpoint the associations between habitat and the highest densities 

of winter flounder, care should be used in interpreting the predicted results. 

Relationships found within any predictive model should be interpreted with the results from existing literature. Relationships 

between the response and any predictor variable in these types of models indicate correlation, and caution should be used 

when extrapolating such results as mechanistic or causative.  

Framework Discussion/Lessons Learned 

Throughout this process, we found that utilizing habitat data to predict winter flounder densities was feasible. The majority 

of the habitat-flounder associations we found were corroborated by previous research. Data limitations and the time 

necessary to identify and acquire all available datasets (both predictor and response data) seemed to be the biggest 

limiting factor to model development. Engaging a broad team of stakeholders and researchers to identify and compile 
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proper data is essential to a smooth and efficient modeling process. Careful consideration of the data availability and 

structure for future efforts will ensure that resulting predictions will be accurate and useful for resource managers. 

Both assessment models were performed for a single estuary. For previous inland habitat assessments, we found this 

general process to be applicable to large regional scale model as well as smaller, more localized models given sufficient 

data, where the more localized models were an improvement when analyzing data within a focal watershed. Based on the 

results from these estuarine studies, it is less clear if a certain scale may improve model results. The relatively data-limited 

YOY model for the smaller Narragansett Bay (n = 41) described more of the variability than the model for LIS which 

contained 525 data points. Since these models were based on different responses and utilized slightly different predictor 

variables, it is unclear how extent of the model and number of data points impacts estuarine models. Given the proper 

data structure, a habitat assessment using a similar framework should still be feasible at much larger regional extents, 

along with the smaller extent models described here. 

Generally, the use and size of the hexagons we used as modeling units seemed acceptable and compatible with the data 

availability and resolution for both the predictor and response data. Smaller units would result in issues with response data, 

where individual trawl surveys intersect numerous hexagons. Using the one square kilometer hexagons, most trawls crossed 

a maximum of two to three hexagons. The resolution of the predictor datasets spanned from several meters to several 

kilometers, and given this range of the predictor variable resolution, we found that the one kilometer hexagon worked well 

to summarize both the higher- and lower-resolution variables.  

Through this process, we compiled and attempted to create models for seine and trawl survey data, both separately and 

combined. An important lesson learned is that despite the ability to convert seine and trawl survey information into 

consistent units, we found that it is best to utilize only one source of data for each distinct modeling effort. The 

inconsistencies between sampling methodologies introduce bias and error into the model. It is also important to ensure the 

sample data can properly represent the response of interest, since not all sampling methodologies are efficient at 

capturing all size classes of fish or sampling all possible locations and habitat types. To evaluate YOY winter flounder, we 

utilized seine survey data, but to evaluate adult winter flounder, we relied on trawl surveys, as each methodology sampled 

the respective size class of fish more efficiently.  

Predictor variables for water quality were the most difficult to acquire. Information on salinity and temperature are 

important to most estuarine species, and data exists in great quantities in newer file formats (NetCDF) for certain areas, but 

time and substantial computational power is necessary to process this data to be used within the predictive models. Data 

that relates to contaminates and other water quality measures are seemingly less available for wide extents. For any 

future modeled response that would be greatly impacted by water quality factors, significant time should be allocated to 

acquire or produce continuous estimates for these types of predictor data. 

Given the mobility of fish in these environments and the tidal and seasonal variability in habitat conditions within estuaries, 

we would expect lower predictive accuracy from habitat models compared to stream-based models which are much more 

discrete and static in nature. Despite the inherent variability, we found that the habitat associations were mostly confirmed 

by other research methods, and that our models explain as much or more variation as other predictive habitat models 

performed in estuarine environments (Meng et al., 2005). Predictive accuracy for future efforts should continue to improve 

as data resolution and availability improves. 

An important benefit of this particular study is the web-based decision support tool. This tool will enable resource managers 

and the general public to visualize and download data and model outputs and evaluate conservation priorities based on 

user-defined ranking criteria. This tool will provide the functionality to evaluate model results alongside other existing data 

pertinent to protection or restoration priorities. The web tool can be accessed at: www.fishhabitattool.org. 

http://www.fishhabitattool.org/
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Appendix A: Predictor Variables for Narragansett Bay Model 
Predictor Variable Description Source 

hexagonID Hexagon unique identifyer NALCC 1km2 hexagon grid, Downstream Strategies 

AREA_WATER Area of water within each hexagon (square meters) NOAA coastline, calculated 

DIST_SHORE Distance to nearest shoreline from each hexagon (meters) NOAA coastline, calculated 

DIST_SAV12 Distance from each hexagon to nearest submerged aquatic vegetation area, 2012 survey  (meters) University of Rhode Island, Environmental Data Center, 2013 

AREA_SAV12 Area within each hexagon of submerged aquatic vegetation, 2012 survey (square meters) University of Rhode Island, Environmental Data Center, 2013 

PCT_SAV12 Percent of water area in each hexagon of submerged aquatic vegetation, 2012 survey University of Rhode Island, Environmental Data Center, 2013 

DIST_SAV06 Distance from each hexagon to nearset submerged aquatic vegetation area, 2006 survey  (meters) University of Rhode Island, Environmental Data Center, 2013 

AREA_SAV06 Area within each hexagon of submerged aquatic vegetation, 2006 survey (square meters) University of Rhode Island, Environmental Data Center, 2013 

PCT_SAV06 Percent of water area in each hexagon of submerged aquatic vegetation, 2006 survey University of Rhode Island, Environmental Data Center, 2013 

DIST_SAV_ALL Distance from each hexagon to nearest submerged aquatic vegetation area, 2006 and 2012 surveys combined 
(meters) 

University of Rhode Island, Environmental Data Center, 2013 

AREA_SAV_ALL Area within each hexagon submerged aquatic vegetation area, 2006 and 2012 surveys combined  (square 
meters) 

University of Rhode Island, Environmental Data Center, 2013 

PCT_SAV_ALL Percent of water area in each hexagon of submerged aquatic vegetation, 2006 and 2012 surveys combined  University of Rhode Island, Environmental Data Center, 2013 

NEAR_DIST Distance from each hexagon to nearest stormwater outfall (meters) Rhode Island Office of Water Resources 

DIST_MAJ_O Distance from each hexagon to nearest waste water treatment plan outfall (meters) (-1 equals greater than 
3000 meters) 

Rhode Island Office of Water Resources 

PERVIOUS_BUF Area of pervious land cover within a 2 km buffer of each hexagon (square meters) Rhode Island Department of Environmental Management 

IMPERV_BUF Area of impervious land cover within a 2 km buffer of each hexagon (square meters) Rhode Island Department of Environmental Management 

PERVIOUS Area of pervious land cover within each hexagon (square meters) Rhode Island Department of Environmental Management 

IMPERVIOUS Area of impervious land cover within each hexagon (square meters) Rhode Island Department of Environmental Management 

MEAN _PER Mean imperviousness within hexagon NLCD 2006 

MEAN_PER_BUFF Mean imperviousness within a 2 km buffer of hexagon NLCD 2006 

LENGTH_HAR Length of hardened shoreline within each hexagon (meters) Rhode Island DEM, 1996 

DIST_HARDS Distance to nearest hardened shoreline for each hexagon (meters) Rhode Island DEM, 1996 

OPEN_WATER Area of open water habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

BRACKISH_M Area of brackish marsh habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

SALT_MARSH Area of salt marsh habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

BEACHES Area of beach habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
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RI Department of Environmental Management, 1996 

SCRUB_SHRU Area of scrub shrub wetlands habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

PHRAGMITES Area of phragmites marsh habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

STREAMBED Area of streambed habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

OYSTER_REE Area of oyster reef habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

DUNE Area of dune habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

ROCKY_SHOR Area of rocky shore habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

PANNES__PO Area of pannes, pools, and tidal flat habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

AQUATIC_BE Area of aquatic beds (eelgrass) habitat within each polygon (square meters) LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

OPEN_WATER_PCT Percentage of open water habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

BRACKISH_M_PCT Percentage of brackish marsh habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

SALT_MARSH_PCT Percentage of salt marsh habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

BEACHES_PCT Percentage of beach habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

SCRUB_SHRU_PCT Percentage of scrub shrub wetlands habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

PHRAGMITES_PCT Percentage of phragmites marsh habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
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Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

STREAMBED_PCT Percentage of streambed habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

OYSTER_REE_PCT Percentage of oyster reef habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

DUNE_PCT Percentage of dune habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

ROCKY_SHOR_PCT Percentage of rocky shore habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

PANNES__PO_PCT Percentage of pannes, pools, and tidal flat habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

AQUATIC_BE_PCT Percentage of aquatic beds (eelgrass) habitat within each polygon LIS Estuarine Habitat, RI Dept. of Environmental Management, LIS 
Estuary Program; 
Rhode Island Coastal Resources Management Council; 
RI Department of Environmental Management, 1996 

Sand_MEAN Percent of sand seafloor within each hexagon Brown University 2007 

Grav_MEAN Percent of gravel seafloor within each hexagon Brown University 2007 

Mud_MEAN Percent of mud seafloor within each hexagon Brown University 2007 

Pct_sand Percent of each hexagon that has sand seafloor Nature Conservancy 2010 

Pct_grav Percent of each hexagon that has gravel seafloor Nature Conservancy 2010 

Pct_mud Percent of each hexagon that has mud seafloor Nature Conservancy 2010 

 Sand_PCT_comb Percent of each hexagon that has sand seafloor Brown University 2007, Nature Conservancy 2010 

 Gravl_PCT_comb Percent of each hexagon that has gravel seafloor Brown University 2007, Nature Conservancy 2010 

 Mud_PCT_comb Percent of each hexagon that has mud seafloor Brown University 2007, Nature Conservancy 2010 

TN_MEAN Average total nitogen value for each hexagon NOAA, Jason Krumholtz 

TP_MEAN Average total phosphorus value for each hexagon NOAA, Jason Krumholtz 

PO4_MEAN Average phophate value for each hexagon NOAA, Jason Krumholtz 

DIN_MEAN Average total nitrate+nitrite+ammonium value for each hexagon NOAA, Jason Krumholtz 

MIN_depth Minimum depth within each hexagon (ft) NOAA CSC, Narragansettbay.org 

MAX_depth Maximum depth within each hexagon (ft) NOAA CSC, Narragansettbay.org 

RANGE_depth Range of depth within each hexagon  (ft) NOAA CSC, Narragansettbay.org 

MEAN_depth Mean depth within each hexagon (ft) NOAA CSC, Narragansettbay.org 

Min_dist_to_33ft_depth Minimum distance to 33 feet depth from each hexagon (feet) NOAA CSC, Narragansettbay.org 
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SZ_NAME Salinity zone the majority of each hexagon falls within (tidal fresh, mixing, ocean zones) NOAA 
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Appendix B: Unused Data for Narragansett Bay Model 
The table below shows the data sources examined by DS and the review team for the LIS Winter Flounder model that were 

unable to be processed or used as predictors in the final model. The column to the far right briefly describes the reasoning 

behind the choice not to use these data. 

Predictor Variable Source Reasoning 

Chlorophyll NERR Limited number of points, no continuous 

interpolated surface. 

Dissolved Oxygen Multiple Limited number of points, no continuous 

interpolated surface. 

Impervious surfaces RIDEM Only available for RI, lacked coverage in 

MA. Utilized NLCD data instead. 

Salinity Multiple Limited number of points, no continuous 

interpolated surface. 

Turbidity NERR Limited number of points, no continuous 

interpolated surface. 

Wastewater treatment facilities RIDEM Only available for RI, lacked coverage in 

MA. 

Water temperature TNC NAMERA Very coarse scale with very little 

differentiation within study area. 

Water temperature Multiple Limited number of points, no continuous 

interpolated surface. 

NOTE-SOURCES FOR SALINITY AND WATER TEMPERATURE WERE IDENTIFIED DURING THE LONG ISLAND SOUND MODELING EFFORT THAT HAD 

COVERAGE FOR THE ENTIRE NORTHEAST, BUT WERE NOT DISCOVERED UNTIL AFTER THE LIS ASSESSMENT WAS FINALIZED.
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Appendix C: Narragansett Bay Age-at-length Analysis 
Eric Schneider, RIDEM 

Purpose: To assess the distribution of catch at length and age captured by the Rhode Island Division of Fish and Wildlife 

(RIDFW) Narragansett Seine Survey (NB Seine) and Coastal Trawl Survey (Trawl) and determine the size for fish < Age-2  

that are caught by both surveys , and thus likely to have not migrated out of LIS. 

Objective: (1) Determine if the NB Seine and Trawl surveys capture YOY and Age 1 winter flounder and (2) Provide a min 

and max length that maximizes catch b/w 2 surveys and minimizes the proportion of WFL being > Age 1. 

Methods: Numbers of winter flounder at length caught between 2000 and 2012 in the (1) NB Seine and (2) Trawl survey 

were plotted and compared to the portion at length of Age - YOY, Age-1, and Age-2 fish. For details about data used - 

see below 

Results: Both the NB Seine and Trawl surveys capture YOY and Age 1 winter flounder. It's hypothesized that the NB Seine 

survey likely only captures Age 2 + early in the spring prior to these fish moving to deeper water. Similarly the Trawl most 

likely captures YOY late summer to fall when fish are seeking deeper water.  The trawl will also capture fish > Age 1. 

This following figure, combined with the data in the corresponding table suggests that including winter flounder between 

5cm and 22cm in length would maximizes catch between 2 surveys and minimizes the proportion of WFL being > Age 1. 

More specifically, this results in the inclusion of 100% of YOY, 79.2% of Age 1 fish, 13.3 % of age 2 fish, and 0.05% of 

Age-3 fish (data not shown, see Age Length Key (ALK)). Note this result is influenced by the fact that only one ALK was 

referenced, thus in a given year there will be error assoc. with using a static cut off (22cm). 

Data used:   

Data Label Description 

Trawl_2000-2012 Numbers at length of winter flounder caught in the trawl survey at fixed and random 

stations in Narr Bay sampled b/w 2000 and 2012 

NB_Seine_2000-2012 Numbers at length of winter flounder caught in the NB Seine survey at fixed stations in 

Narr Bay sampled b/w 2000 and 2012 

ALK - YOY The portion at length (YOY) based on the combined (Spring and Fall) Age Length Key 

produced by the NEFSC from winter flounder captured by the Bigelow during 2012 

ALK - Age 1 The portion at length (Age-1) based on the combined (Spring and Fall) Age Length Key 

produced by the NEFSC from winter flounder captured by the Bigelow during 2012 

ALK - Age 2 The portion at length (Age-2)based on the combined (Spring and Fall) Age Length Key 

produced by the NEFSC from winter flounder captured by the Bigelow during 2012 
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Summary: Eric Schneider suggests using fish captured by the Trawl and NB Seine survey between 5cm and 22cm in length 

will result in the majority of fish being YOY and Age-1. Based on the data used in this analysis, 13% will be Age-2 and 

0.05% will be Age-3; This "cut-off" seems like a reasonable, conservative estimate that will provide >85% probability that 

fish are < Age 2 and likely have not yet migrated (I think this results in 85%, but might be wrth double checking). If a more 

conservative estimate is needed, the cut-off could be pared back to 19cm (e.g. 96% of all fish < Age 2); however, I think 

85% is a reasonable threshold. 
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Appendix D: Predictor Variables for Long Island Sound  
 

Variable Name Variable Description Source 

hexagonID Hexagon Identifier Downstream 

Strategies 

Min_depth Minimum depth within hexagon NOAA 

Max_depth Maximum depth within hexagon NOAA 

Mean_depth Mean depth within hexagon NOAA 

Mean_temp Mean April-May bottom temperature, 2006-2009 NECOFS 

Mean_salinity Mean April-May bottom salinity, 2006-2009 NECOFS 

Mean_chlorophyll Mean chlorophyll a TNC 

Dist_to_marsh Distance to emergent marsh TNC 

Pct_gravel Percent benthic gravel TNC 

Pct_sand Percent benthic sand TNC 

Pct_silt_mud Percent benthic silt and mud TNC 

Pct_depression Percent depression bottom form TNC 

Pct_low_slope Percent low slope bottom form TNC 

Pct_steep Percent steep bottom form TNC 

Pct_mid_flat Percent mid flat bottom form TNC 

Pct_side_slope Percent side slope bottom form TNC 

Pct_high_flat Percent high flat bottom form TNC 

Pct_high_slope Percent high slope bottom form TNC 

Pct_erosion Percent erosion sediment environment USGS 

Pct_sorting Percent sorting sediment environment USGS 

Pct_deposition Percent deposition sediment environment USGS 

Pct_transport Percent transport sediment environment USGS 

Mean_imperv_2km Mean imperviousness within 2km buffer NLCD 

 

 


