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1. INTRODUCTION 

1.1 Document outline 

This report provides a summary of the key outcomes resulting from models developed by DS for use in 
assessing aquatic habitats for the Midwest Fish Habitat Partnerships. The appendices provide additional 
maps, charts, and metadata useful for evaluating the results of the models. 

This document is divided into four major sections. This section, Section 1, summarizes the project goals, 
structure, and methodology. Sections 2 and 3 summarize the model input and results for each of the three 
response variables. Section 4 summarizes some of the limitations to this modeling effort, and outlines 
suggestions for future similar works.  

The following are included for each model’s results summary.  

 Subsection one, Modeling inputs, discusses details of the predictor and response variables used in 
the analyses.  

 Subsection two, Modeling process, covers the basic details and outcomes of the statistical modeling 
process using BRTs, including information on model certainty. Variable influence and functional 
relationships between predictor and response variables are included under corresponding headings 
as well.  

 Subsection three, Post-modeling, contains information resulting from the post-modeling process, 
including information on the top stressors and natural habitat variables and their role in the 
calculation of the final indices. 

 Subsection four, Mapped results, contains maps for visualizing conditions at the 1:100k catchment 
scale and includes maps of expected current probability of presence, stress, and natural quality; it 
also provides examples of how the two post-modeling indices (i.e., HQI and ASI) can be combined to 
inform restoration priorities and how those priorities can be visualized in a spatially explicit manner. 

1.2 Project background 

Fishery and aquatic scientists often assess habitats to understand the distribution, status, stressors, and 
relative abundance of aquatic resources. Due to the spatial nature of aquatic habitats and the increasing 
scope of management needs, traditional analytical assessment methods are often limited in their ability to 
address complex and dynamic aquatic systems. Advancements in the geographic information systems (GIS) 
field and related technologies have enabled scientists and managers to more effectively collate, archive, 
display, analyze, and model spatial and temporal data. For example, spatially explicit habitat assessment 
models allow for a more robust interpretation of many terrestrial and aquatic datasets, including physical and 
biological monitoring data, habitat diversity, watershed characteristics, and socioeconomic parameters. 

Downstream Strategies (DS) was contracted by the United States Fish and Wildlife Service (USFWS) to create 
a spatially explicit data analysis and modeling system for assessing fish habitat condition for several individual 
Fish Habitat Partnerships (FHP) across the Midwest and Great Plains based on a range of metrics. These 
analyses provided data and tools for specific aquatic species for each FHP, and were constructed at the scale 
of the individual FHP or at a region-wide scale. These results were useful, but the models covering large 
extents led to the identification of broad-scale regional variables as indicators of stress and habitat quality. 
DS then performed an analysis of scale that indicated that driving variables for the same aquatic response 
changed markedly depending on the scale (extent) that the model was built, and indicated that more 
localized models would be more effective at pinpointing localized stressors. This project built upon the 
knowledge gained and framework designed during the individual FHP-scale modeling efforts and provided 
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more localized estimates of aquatic health. Additionally, for this analysis, an updated methodology was 
developed for assigning stress and determining natural quality of aquatic habitats 

Generally, the models, analyses, and data produced as a result of this project are intended to enable a 
unique, broad, and spatially explicit understanding of the links between natural habitat conditions, human 
influences on aquatic habitats, and aquatic health. Specifically, the outcomes can be utilized to conduct fish 
habitat condition assessments based on a range of stakeholder-specified metrics and modeling endpoints to 
help determine natural drivers of aquatic conditions, as well as major stressors for the selected watersheds 
within the Ohio River Basin. The ultimate goal is to improve understanding of how local processes influence 
stream conditions in the region and to provide additional knowledge, data, and tools to help prioritize and 
drive conservation action throughout the study area. 

1.3 Overview of the assessment process 

1.3.1 Modeling 

A diagram of the general assessment process is outlined in Figure 1. DS received landscape and aquatic data 
specified and provided by the individual FHPs to develop models and tools for visualizing expected current 
and potential future conditions and prioritizing management actions.  

Figure 1: Diagram of the habitat assessment process 

 

The data provided by FHPs for use in the modeling process can be broken down into two categories: 
response variables and predictor variables. There were two response variables used in this assessment: 
Licking watershed MBI and Muskingum watershed IBI scores. Each response variable represented a separate 
model. The predictor variables are typically measures of land use or land cover derived from GIS, such as 
percent impervious surface area or road crossing density. Although the response variable is always measured 
at the same local scale (e.g., individual sample site on a stream), the predictor variables are compiled at 
multiple scales (Figure 2), including the local scale (e.g., single 1:100k National Hydrography Dataset (NHD) 
stream catchment), the network scale (e.g., all upstream catchments and the local catchment), or the 
regional scale (e.g., ecoregion).  
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Figure 2: Diagram and examples of different scales of data used for predictor variables 

 

For this assessment nearly all of the predictor and response data necessary was already held by DS from prior 
individual FHP assessments across the Midwest. This data was simply clipped to the selected watershed 
boundaries. The final list of potential predictor variables is shown below in Table 1. 

Table 1: Predictor variables 

Variable description Source Variable Type 

Network drainage area NHD+ Natural 

Minimum catchment elevation NHD+ Natural 

Slope of catchment flowline NHD+ Natural 

Mean annual precipitation NHD+ Natural 

Mean annual air temperature NHD+ Natural 

Mean annual baseflow index USGS Natural 

Mean annual recharge rate USGS Natural 

Bedrock geology USGS Natural 

Surficial Geology USGS Natural 

Soil hydrologic group STATSGO Natural 

Landcover classification NLCD 2006 Varies 

Riparian agriculture NLCD 2006 Anthropogenic 

Riparian development NLCD2006 Anthropogenic 

Nutrient inputs USGS Anthropogenic 

Wetlands NWI/GAP Anthropogenic 

Impervious surface data NLCD 2006 Anthropogenic 

Surface mine area (Licking River only) OSM, KOMSL, KYDR Anthropogenic 

Groundwater use rate USGS Anthropogenic 

Surface water use rate USGS Anthropogenic 

Population density NOAA Anthropogenic 
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Road/stream crossing density TIGER Anthropogenic 

Road density TIGER Anthropogenic 

Dam density National Inventory of Dams Anthropogenic 

Active mine density USGS Anthropogenic 

Toxic release inventory site density USEPA Anthropogenic 

NPDES permit density USEPA Anthropogenic 

Superfund site density USEPA Anthropogenic 

 

The process then employs a statistical modeling approach, called boosted regression trees (BRT), to relate 
the instream response variable to the landscape-based predictor variables. BRT models combine decision 
trees (i.e. classification and regression trees [CART]) and boosting methodologies, which result in better 
cross-validated models than other methods (Elith et al., 2006i), including CART. Decision trees are 
advantageous because (1) they can incorporate any type of predictor data (binary, numeric, categorical); (2) 
model outcomes are unaffected by differing scales of predictors; (3) irrelevant predictors are rarely selected; 
(4) they are insensitive to outliers and non-normalized data; (5) they can accommodate missing predictor 
data; and (6) they can automatically handle interactions between predictors (Elith et al., 2008). The boosting 
algorithm used by BRT improves upon the accuracy of a basic CART approach by following the idea that 
averaging many rough models offers efficiency over finding a single prediction rule that is highly accurate 
(Elith et al., 2008ii).  

This process results in a series of quantitative outcomes, including predictions of expected current conditions 
to all catchments in the FHP (on the scale of the response), measures of the accuracy of those predictions, a 
quantification of each predictor variable’s relative influence on the predictions (i.e., variable importance), 
and a series of plots illustrating the modeled functional relationship between each predictor and the 
response (e.g., plot of impervious area vs. presence-absence). The predictions of current conditions are 
created by extrapolating the BRT model to each catchment within the modeling area. The units of the 
predicted current condition for this assessment are predicted index scores for each catchment. These current 
conditions are useful for assessments of suitable habitats and mapping the distributions of the index scores.  

Predictive accuracy is quantified using an internal cross-validation (CV) method (Elith et al., 2008). The 
method consists of randomly splitting the input dataset into ten equally-sized subsets, developing a BRT 
model on a single subset and testing its performance on the remaining nine, and then repeating that process 
for the remaining nine subsets. Thus, the accuracy measures, such as the CV receiver operating characteristic 
(ROC) score (for presence-absence responses) or the CV correlation coefficient, are actually averages of ten 
separate ROC or correlation measurements. A standard error for the ten estimates is also given. CV measures 
are designed to estimate how well the model will perform using independent data. 

1.3.2 Post modeling 

Characterizing anthropogenic stress and natural habitat quality of aquatic habitats is a useful and necessary 
process for helping land and fisheries managers identify place-based conservation and restoration strategies. 
For each model, a post-modeling process was used to characterize anthropogenic stress and natural habitat 
quality for all catchments within the study area. Stress and natural habitat quality indices and metrics were 
identified and calculated based on BRT model outputs, and details of those calculations are below. 

Once developed, these indices of stress and habitat quality can be used to generate and visualize restoration 
and protection priorities by analyzing how stress reduction or habitat improvement can increase the 
predicted index score. For example, areas of high natural quality and low stress could represent protection 
priorities, whereas areas of high natural quality and high stress may represent restoration priorities. 
 

http://www2.research.att.com/~phillips/pdf/Elith_et_al_ecography.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2008.01390.x/pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2008.01390.x/pdf
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Anthropogenic stress 
 
Stress indices are critical for evaluating anthropogenic landscape drivers that structure aquatic responses. 
Managers can use stress indices and metrics to assess how anthropogenic processes are impacting aquatic 
responses and can utilize this information to cite restoration projects in order to maximize efficiency. 
Individual stressors were identified by examining BRT model outputs, both the variable influence table and 
the functional relationship between predictor variables and response variables. Any predictor variable 
significantly affected by anthropogenic disturbance was included as a potential stressor. Stressors were not 
utilized for calculation of stress in the model when the functional relationship between a potential stressor 
and the response variable was not indicative of a mechanistic relationship. 
 
Individual stress metrics were calculated by determining the increase in predicted index score for each 
catchment when stress for that predictor variable was hypothetically removed. A new predictor variable 
dataset was produced to calculate each individual stressor metric.  The new predictor dataset contained the 
same values as the original predictor dataset except for a single anthropogenic variable for which a stress 
metric was calculated. For this variable, the values were all hypothetically set to reflect “no stress.” This 
provided a hypothetical baseline that represented the removal of all stress from that predictor variable. The 
existing BRT model was then applied to the new hypothetical landscape data to provide an extrapolation of 
the current model assuming zero stress for that stressor. The difference between the current predicted index 
score and the predicted index score under this “no stress” situation indicated the change that could be 
attributable to stress. This process was repeated for each stressor to generate individual metrics of stress. 
Higher stress values indicated a larger change in predicted index score after removing stress, and lower stress 
values indicated that the catchment was relatively unaffected by removing stress (Table 2).  
 
For each catchment, the individual stress metrics (e.g. agriculture stress, impervious surface stress, etc) were 
then summed to produce an overall stress metric, the anthropogenic stress index (ASI).  The generalized 
formula for calculating individual stress metrics and ASI is as follows: 

individual stress metric = predicted index scoreno stress – predicted index scorecurrent  

anthropogenic stress index (ASI) = individual stress metric 1 + individual stress metric 2 + ….  

Table 2: Example of stress calculations 

Comid Current 
Condition 
Predictions 

Stressor 1 
Predictions 

Stressor 1 
Metric 

Stressor 2 
Predictions 

Stressor 2 
Metric 

Anthro. Stress 
Index (ASI) 

Catchment ID Predictions 
using current 
landscape data 

Predictions 
when stressor 1 
removed 

(Stressor 1 pred 
– Current Pred) 

Predictions 
when stressor 2 
removed 

(Stressor 2 pred 
– Current Pred) 

Stressor 1 
Metric + 
Stressor 2 
Metric 

1234567 20 24 4 20 0 4 

1234568 30 42 12 33 3 15 

1234569 48 49 1 48 0 1 

Natural habitat quality 

Natural habitat quality metrics provide critical baseline information on the optimal potential condition of a 
catchment. We defined natural quality as the maximum predicted index score under a zero-stress situation; 
essentially, the highest attainable condition in the catchment. These metrics allow managers to further 
classify each catchment and target specific land-based conservation or restoration actions.  
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The natural habitat quality index (HQI) was calculated directly from the BRT output. Metrics for ‘natural’ 
predictor variables were calculated using a different approach than the stressor calculations detailed above. 
Individual natural quality metrics were not seen as useful since individual habitat variables were not 
considered practical management targets (e.g., elevation is a relatively fixed value) and therefore were not 
used in the calculation of HQI. A single hypothetical ‘no stress’ dataset was created where all stressors were 
removed. The existing BRT model was then applied to this hypothetical predictor dataset, and the resulting 
predicted index score indicated the maximum condition attainable by removing all stress. The index score 
calculated by the BRT model for this hypothetical ‘no stress’ dataset is the HQI and this value indicates the 
maximum condition expected in each catchment.  

natural habitat quality index (HQI) = predicted index scoreall stressors removed  

1.3.3 Assessment Summary 

These methods provide current predictions of index scores, ASI scores, and HQI scores for both models. 
Metrics and indices were generated at the 1:100k NHD catchment scale and then mapped in GIS.  
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2. LICKING RIVER WATERSHED (KY) MBI 

2.1 Modeling inputs 

DS coordinated with ORBFHP scientists to model the predicted index score for the Kentucky 
Macroinvertebrate Bioassessment Index (MBI) across the Licking River watershed. The MBI was developed to 
provide a statewide biotic integrity index of stream health by utilizing data from macroinvertebrate 
communities (Pond et al. 2003). The MBI creates a continuous index of potential scores from 0-100, and also 
defined thresholds for general classifications of streams. For this report, all mapping of MBI scores will be 
done using the following classification scheme, which utilizes the threshold recommendations for wadeable 
streams in the “Bluegrass” region of Kentucky, which covers the majority of the Licking River watershed we 
are modeling here. 

Table 3. MBI stream rating thresholds 

Stream rating MBI Score 

Excellent ≥ 70 

Good 61-69 

Fair 41-60 

Poor 21-40 

Very Poor 0-20 

 

ORBFHP provided DS with data collected in streams over a time frame spanning from 1999 to 2011 which 
was comprised of 109 observations. Figure 3 maps all of the sampling sites that were used to construct the 
model and outlines the Licking River watershed boundary. Model outputs were applied to all 1:100k 
catchments within the Licking River watershed. 

DS cooperated with ORBFHP scientists to arrive at a list of landscape-based habitat variables used to predict 
aquatic responses throughout the region.  These variables were also used to characterize habitat quality and 
anthropogenic stress. Building on the science team’s input, DS compiled a list of 93 predictors for evaluation.  
Preliminary exploratory models were then run to identify variable predictive performance and statistical 
redundancy. From that list, 76 variables were removed due to statistical redundancy (r > 0.6), logical 
redundancy, or poor predictive performance (relative influence < 1.0 in preliminary model run). This resulted 
in a final list of 17 predictor variables for the BRT model and assessment. See Appendix A for a full data 
dictionary. 
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Figure 3: MBI sample sites and Licking River watershed 
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2.2 Modeling process 

2.2.1 Predictive performance 

The final selected model was comprised of 1,600 trees. The model had a CV correlation statistic of 
0.521±0.093. 

2.2.2 Variable influence 

The BRT output includes a list of the predictor variables used in the model ordered and scored by their 
relative importance. The relative importance values are based on the number of times a variable is selected 
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over 
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores 
for all variables is 100, where higher numbers indicate greater influence. The relative influence table for the 
MBI model is shown below in Table 4.  

Table 4: Relative influence of all variables in the final MBI model 

Variable code Variable description Relative influence 

BFI_MEANC Network mean baseflow index 17.579 

WATER_GWC Network groundwater use 10.758 

WATER_SWC Network surface water use 9.423 

GRASSPC Network grassland land cover 8.041 

ROADCR_DEN Local road crossing density 7.820 

IMP06C Network impervious surface cover 7.708 

WETLANDPC Network wetland land cover 6.360 

ROADCRC_DEN Network road crossing density 5.642 

CUMDRAINAG Network drainage area 4.786 

RIP_AGC Network riparian agriculture density 4.623 

AG_PC Network agriculture land cover 3.587 

BROCK7PC Network shale bedrock geology 3.180 

SOIL2PC Network soil hydrologic group B 2.790 

RIP_DEVC Network riparian development 2.359 

BROCK5PC Network sand/gravel bedrock geology 2.027 

SURF3PC Network alluvium surficial geology 1.726 

TEMP Mean annual air temperature 1.591 

Note: Individual variables are highlighted according to whether they were determined to be anthropogenic  
(grey shading) or natural (no shading).  

2.2.3 Variable functions 

The BRT output also contains quantitative information on partial dependence functions that can be plotted to 
visualize the effect of each individual predictor variable on the response after accounting for all other 
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots 
are not always a perfect representation of the relationship for each variable, particularly if interactions are 
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for 
interpretation (Friedman, 2001; Friedman and Meulman, 2003).  

These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The 
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each 
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predictor variable’s function plot can be accurately compared. The dash marks at the top of each function 
represent the deciles of the data used to build the model. The function plots for the nine most influential 
variables in the MBI model (Table 4) are illustrated in Figure 4. The plots for all variables are shown in 
Appendix B.
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Figure 4: Functional responses of the dependent variable to individual predictors of MBI 

 

Note: Only the top nine predictors, based on relative influence (shown in parentheses; see Appendix A for descriptions of variable codes), are shown here. See Appendix B for plots of remaining predictor variables.
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2.3 Post-modeling 

2.3.1 Stress and natural quality 

The variable importance table and partial dependence functions of the final BRT model were used to assess 
the potential stressors for the MBI model. Within the model, there were ten variables considered 
anthropogenic in nature (Table 4). After reviewing the functional relationships of these potential stressors, 
four stressors were removed from ASI calculations. These variables (‘ROADCR_DEN’, ‘WETLAND_PC’, 
‘RIP_AGC’, and ‘AGPC’) had function plots that were unintuitive: their relationships to the response likely 
captured some sort of spatial variation in the model rather than a mechanistic relationship with the 
response. The remaining stressors were used to calculate ASI for the MBI model. Section 1.3.2 details how 
ASI and HQI were calculated for each model.  

2.4 Mapped results 

2.4.1 Expected current conditions 

MBI scores were calculated for all 1:100k stream catchments in the study area using the BRT model. The 
predicted scores ranged from 19.86 to 79.63. The mean predicted score across the region was 57.60. Of the 
total 3,719 catchments, about 5% (189 catchments) had a predicted MBI score greater than 70 (excellent 
rating), and about 37% (1,377 catchments) had a predicted MBI score in the ‘good’ range (61-69) These 
results are mapped in Figure 5.
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Figure 5: Expected coldwater guild distribution 
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2.4.2 Spatial variability in predictive performance 

Analyzing patterns of omission and commission may highlight regions where the model is performing well or 
poorly or could suggest missing explanatory variables. To assess omission and commission, residuals were 
calculated by the BRT model. The residuals are a measure of the difference in the measured and modeled 
values (measured value minus modeled value). Negative residuals indicate overpredictions (predicting higher 
values than are true), while positive residuals indicate underpredictions (predicting lower values than are 
true). Figure 6 shows the distribution of model residuals per sampling site.
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Figure 6: Distribution of MBI model residuals by sampling site 
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2.4.3 Indices of stress and natural quality 

Maps of HQI and ASI illustrate the spatial distribution of natural habitat potential (i.e., HQI score) and 
anthropogenic stress (i.e., ASI score) throughout the modeled region. HQI and ASI scores are mapped in 
Figure 7 and Figure 8, respectively. The variables contributing toward the calculation of ASI are mapped in 
Figure 9 through Figure 14. See Sections 1.3.2 and 2.3 for more details on HQI and ASI calculation. For HQI, 
higher values indicate higher natural quality, while higher values for ASI indicate higher levels of 
anthropogenic stress. 
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Figure 7: Natural habitat quality index for MBI 
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Figure 8: Anthropogenic stress index for MBI 
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Figure 9: Groundwater use stressor metric for MBI 
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Figure 10: Surface water use stressor metric for MBI 
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Figure 11: Grassland stressor metric for MBI 
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Figure 12: Impervious surface stressor metric for MBI 
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Figure 13: Road crossing stressor metric for MBI 
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Figure 14: Riparian developed land stressor metric for MBI 
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2.4.4 Restoration and protection priorities 

A plot of HQI versus ASI values for all catchments in the study area can be used as a reference to define HQI 
and ASI thresholds when evaluating restoration and protection priorities (Figure 15). Restoration priorities 
could be areas in the upper right hand corner of the plot below, where stress is high, but natural quality is 
also high. Along the same lines, catchments falling in the upper left hand corner of this plot where stress is 
low and natural quality is high may be the highest priorities for protection. This information is presented to 
explain the functionality of querying catchments based on these attributes to identify areas that meet user-
defined criteria to guide conservation, protection, and restoration planning. 

Figure 15: Coldwater guild HQI versus ASI values for all catchments  
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3. MUSKINGUM RIVER WATERSHED (OH) IBI 

3.1 Modeling inputs 

DS coordinated with ORBFHP scientists to model the predicted index score for the Ohio Fish Index of Biotic 
Integrity (IBI) across the Muskingum River watershed. The IBI was developed to provide a statewide biotic 
integrity index of stream health by utilizing data from fish communities (Ohio Environmental Protection 
Agency (OHEPA). 1987). The IBI creates an index of potential scores from 0-60. IBI scores are used to assign a 
narrative evaluation of a streams ecological condition (OHEPA. 2013) and are also used as biocritera to assess 
if streams meet water quality standards for designated uses (OHEPA 1989), as summarized in Table 5 for the 
“Western Allegheny Plateau” region of Ohio which covers the Muskingum River watershed modeled for this 
assessment. For this report, all mapping of IBI scores will be done using the classification scheme in Table 6, 
which utilizes the narrative ranges and biocriteria recommendations. 

Table 5. OHEPA narrative evaluations and biocriteria levels for OHEPA water quality use designations 

Narrative evaluation Water quality use designation IBI Score 

Exceptional EWH 50 – 60 

Very good EWH non-significant departure 46 – 49 

Good WWH 44 – 45 

Marginally good WWH non-significant departure 40 – 43 

Fair  28 – 39  

Poor MWH-C / MWH-A 24 – 27  

Poor  18 – 23 

Very poor  12 – 17 

Note: EWH = exceptional warmwater habitat, WWH = warmwater habitat, MWH-A = modified warmwater habitat, 
 mine affected, MWH-C = modified warmwater habitat, channel modified 

 

Table 6. Classification scheme used for mapping symbology throughout this report 

Narrative evaluation Water use designation IBI Score 

Exceptional EWH 50 – 60 

Very good/Good WWH 44 – 49 

Marginally good  40 – 43 

Fair  28 – 39  

Poor MWH-C /MWH-A 24 – 27 

Poor/Very  poor  0 – 23  

Note: EWH = exceptional warmwater habitat, WWH = warmwater habitat, MWH-A = modified warmwater habitat,  
mine affected, MWH-C = modified warmwater habitat, channel modified 

 

ORBFHP provided DS with data collected in streams over a time frame spanning from 2003 to 2012 which 
was comprised of 724 observations. Figure 16 maps all of the sampling sites that were used to construct the 
model and outlines the Licking River watershed boundary. Model outputs were applied to all 1:100k 
catchments within the Licking River watershed. 

DS cooperated with ORBFHP scientists to arrive at a list of landscape-based habitat variables used to predict 
aquatic responses throughout the region.  These variables were also used to characterize habitat quality and 
anthropogenic stress. Building on the science team’s input DS compiled a list of 91 predictors for evaluation.  
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Preliminary exploratory models were then run to identify variable predictive performance and statistical 
redundancy. From that list, 73 variables were removed due to statistical redundancy (r > 0.6), logical 
redundancy, or poor predictive performance (relative influence < 1.0 in preliminary model run). This resulted 
in a final list of 18 predictor variables for the BRT model and assessment. See Appendix A for a full data 
dictionary.
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Figure 16: IBI modeling area and sampling sites 
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3.2 Modeling process 

3.2.1 Predictive performance 

The final selected model was comprised of 2,700 trees. The model had a CV correlation statistic of 
0.520±0.034. 

3.2.2 Variable influence 

The BRT output includes a list of the predictor variables used in the model ordered and scored by their 
relative importance. The relative importance values are based on the number of times a variable is selected 
for splitting, weighted by the squared improvement to the model as a result of each split, and averaged over 
all trees (Friedman and Meulman, 2003). The relative influence score is scaled so that the sum of the scores 
for all variables is 100, where higher numbers indicate greater influence. The relative influence table for the 
IBI guild model is shown below in Table 7.  

Table 7: Relative influence of all variables in the final IBI model 

Variable code Variable description 
Relative 

influence 

PRECIP Mean annual precipitation 12.62 

AGPC Network agriculture land cover 12.53 

GRASSPC Network grassland cover 12.53 

BFI_MEANC Network mean baseflow 11.14 

WETLANDPC Network wetland land cover 7.70 

CUMDRAINAG Network drainage area 6.68 

PASTPC Network pasture land cover 4.30 

IMP06C Network impervious surface cover 4.07 

BROCK6PC Network sandstone bedrock geology 4.00 

CATTLEC Network cattle density 3.97 

TEMP Mean annual air temperature 3.62 

FORP Local forest land cover 3.47 

SOIL2PC Network soil hydrologic group 2 3.43 

ROADCR_DEN Local road crossing density 2.32 

GRASSP Local grassland cover 2.18 

CROPSP Local crop landcover 2.16 

ROADCRC_DEN Network road crossing density 1.92 

RIP_AG Local riparian agriculture land cover 1.66 

 Note: Individual variables are highlighted according to whether they were determined to be anthropogenic  
(grey shading) or natural (no shading). 

3.2.3 Variable functions 

The BRT output also contains quantitative information on partial dependence functions that can be plotted to 
visualize the effect of each individual predictor variable on the response after accounting for all other 
variables in the model. Similar to the interpretation of traditional regression coefficients, the function plots 
are not always a perfect representation of the relationship for each variable, particularly if interactions are 
strong or predictors are strongly correlated. However, they do provide a useful and objective basis for 
interpretation (Friedman, 2001; Friedman and Meulman, 2003).  
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These plots show the trend of the response variable (y-axis) as the predictor variable (x-axis) changes. The 
response variable is transformed (usually to the logit scale) so that the magnitude of trends for each 
predictor variable’s function plot can be accurately compared. The dash marks at the top of each function 
represent the deciles of the data used to build the model. The function plots for the nine most influential 
variables in the IBI model (Table 7) are illustrated in Figure 17. The plots for all variables are shown in 
Appendix B.
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Figure 17: Functional responses of the dependent variable to individual predictors of IBI 

 

Note: Only the top nine predictors, based on relative influence (shown in parentheses; see Appendix A for descriptions of variable codes), are shown here. See Appendix B for plots of remaining predictor variables.
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3.3 Post-modeling 

3.3.1 Stress and natural quality 

The variable importance table and partial dependence functions of the final BRT model were used to assess 
the potential stressors for the MBI model. Within the model, there were ten variables considered 
anthropogenic in nature (Table 7). After reviewing the functional relationships of these potential stressors, 
five stressors were removed from ASI calculations. These variables (‘AGPC’, ‘PASTPC’, ‘ROADCR_DEN’, 
‘ROADCRC_DEN’, and ‘RIP_AG’) had function plots that were unintuitive: their relationships to the response 
likely captured some sort of spatial variation in the model rather than a mechanistic relationship with the 
response. The remaining stressors were used to calculate ASI for the MBI model. Section 1.3.2 details how 
ASI and HQI were calculated for each model.   

3.4 Mapped Results 

3.4.1 Expected current conditions 

IBI score was calculated for all 1:100k stream catchments in the study area using the BRT model. The 
predicted IBI scores ranged from 14.6 to 54.4. The mean predicted IBI score was 39.2. Of the total 10,351 
catchments, about 1.5% (155 catchments) had a predicted IBI greater than 50, which would correlate to 
OHEPA’s biocriteria for exceptional warmwater habitat (EWH). About 47% (4,837 catchments) had predicted 
scores between 40 and 50, which meet the biocriteria for warmwater habitat (WWH) or non-significant 
departure from WWH. Another 47% (4,878 catchments) were predicted to be in the “fair” category 
determined by OHEPA with scores of 28-40. Only 4.5% of the catchments in the watershed (481 catchments) 
were predicted to be in the “poor” or “very poor” categories. The predictions are mapped in Figure 18.
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Figure 18: Expected IBI distribution 
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3.4.2 Spatial variability in predictive performance 

Analyzing patterns of omission and commission may highlight regions where the model is performing well or 
poorly or could suggest missing explanatory variables. To assess omission and commission, residuals were 
calculated by the BRT model. The residuals are a measure of the difference in the measured and modeled 
values (measured value minus modeled value). Negative residuals indicate overpredictions (predicting higher 
values than are true), while positive residuals indicate underpredictions (predicting lower values than are 
true). Figure 19 shows the distribution of model residuals per sampling site.
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Figure 19: Distribution of IBI model residuals by sampling site 
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3.4.3 Indices of stress and natural quality 

Maps of HQI and ASI illustrate the spatial distribution of natural habitat potential (i.e., HQI score) and 
anthropogenic stress (i.e., ASI score) throughout the Midwest region. HQI and ASI scores are mapped in 
Figure 20 and Figure 21, respectively. The variables contributing toward the calculation of ASI are mapped in 
Figure 22 - Figure 26. HQI, ASI, and their metrics are all scaled on a 0-1 scale (see Sections 1.3.2 and 3.3 for 
more details on HQI and ASI calculation). For HQI, higher values indicate higher natural quality, while higher 
values for ASI indicate higher levels of anthropogenic stress. 
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Figure 20: Natural quality index for IBI 
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Figure 21: Anthropogenic stress index for IBI 
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Figure 22: Network grassland stressor metric for IBI 
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Figure 23: Network impervious surface stressor metric for IBI 
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Figure 24: Cattle density stressor metric for IBI 
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Figure 25: Local grassland stressor metric for IBI 
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Figure 26: Local cropland stressor metric for IBI 
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3.4.4 Restoration and protection priorities 

A plot of HQI versus ASI values for all catchments in the study area can be used as a reference to define HQI 
and ASI thresholds when evaluating restoration and protection priorities (Figure 27). Restoration priorities 
could be areas in the upper right hand corner of the plot below, where stress is high, but natural quality is 
also high. Along the same lines, catchments falling in the upper left hand corner of this plot where stress is 
low and natural quality is high may be the highest priorities for protection. This information is presented to 
explain the functionality of querying catchments based on these attributes to identify areas that meet user-
defined criteria to guide conservation, protection, and restoration planning 

Figure 27: HQI versus ASI values for all catchments for IBI 

 

.
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4. LIMITATIONS AND SUGGESTIONS FOR FUTURE WORK 

In general, while the estimates of index scores, HQI, and ASI generated through this assessment represent a 
useful and objective means for assessing aquatic habitat and prioritizing habitats for restoration or 
protection, there are some limitations that are important to consider. Results generated through the 
modeling process are ultimately limited by the quality of data used to generate them. In the future, the 
model can be improved by improving the resolution and precision of the data. For example, some county-
level data were used as predictor variables although the data likely generalize conditions at the catchment 
scale. Although these variables—such as network surface water consumption—were limited in spatial 
resolution, they still had high relative influence in the BRT model and were important to retain for predictive 
performance. In the future, refinement of these county-level variables or inclusion of higher resolution 
surrogates could improve both the precision of the BRT model predictions and post-modeling indices. 

A second limitation is that the data and maps represent only a snapshot in time. Therefore, the models may 
not represent conditions before or after the data were collected or created. For example, any habitat lost or 
gained due to increased impervious surface cover since the 2006 National Land Cover Database (NLCD) was 
not considered in this assessment. The amount of such changes would likely be minimal, but at this scale of 
study the differences could be important. Similarly, a portion of the uncertainty can be attributable to the 
temporal mismatches between the response data and landscape data, although we used the best available 
matching data to avoid this as much as possible, though improving the temporal match between those 
datasets for future work would be beneficial. 

These models offered valuable insight into which landscape-level stressors and natural conditions were 
structuring aquatic responses across the modeled watersheds. Recent modeling efforts at the regional and 
FHP scale have indicated that smaller-scale models like these are likely necessary to pinpoint localized 
stressors. Please see the DS report “Analysis of scale on boosted regression tree fish habitat models” for a 
case study of how scale influences the importance of stressor variables. The case study was performed on 
presence-absence responses and showed improved predictive performance as the extent of the models was 
reduced. The responses modeled in this effort were likely subject to the improved predictive performance of 
a more localized model extent, but the cross-validated correlation score indicates these models are 
performing only moderately well. Some of this can likely be attributed to modeling a continuous response 
variable rather than a presence-absence response.  

As with any modeling efforts, all of the variation in predicted measures can never be fully accounted for, and 
the same holds true for these assessments. Some unexplained variation could likely be explained by local 
habitat measures such as water quality (pH, alkalinity, instream temperature), physical habitat complexity, 
and substrate size are examples of local measures important to structuring aquatic communities. By including 
variables such as slope, geology, and land cover, some of these processes may be accounted for in our 
assessment, but still could not be directly quantified in this analysis given the scope and scale of the project. 
These variables were not directly used as predictor variables, although, when possible, surrogates were used 
to approximate variation in the model resulting from these processes. Nonetheless, exclusion of detailed 
local measures likely accounts for some uncertainty in the model results. Thus, the results from this analysis 
should be combined with local expert knowledge and additional field data to arrive at the most accurate 
representation of habitat conditions.  
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: DATA DICTIONARY Appendix A

 

Field Description Source 

Comid catchment comid (unique identifier) NHDPlus 

Areasqkm area of catchment, sq km NHDPlus 

Cumdrainag Cumulative drainage area in square kilometers NHDPlus 

Minelevraw Minimum elevation (unsmoothed) in meters NHDPlus 

Slope Slope of flowline (cm/cm) NHDPlus 

Precip Mean annual precipitation in mm NHDPlus 

Temp Mean annual temperature in degrees centigrade * 10 NHDPlus 

Imp06 mean percent impervious, catchment NLCD 2006 

Imp06C mean percent impervious, cumulative NLCD 2006 

Brock1P Catchment bedrock geology, percent Carbonate (LOCAL) USGS (Reclassified by Letsinger) 

Brock 2P Catchment bedrock geology, percent Felsic (igneous) (LOCAL) USGS (Reclassified by Letsinger) 

Brock 3P Catchment bedrock geology, percent Mafic (igneous) (LOCAL) USGS (Reclassified by Letsinger) 

Brock 4P Catchment bedrock geology, percent Metamorphic (LOCAL) USGS (Reclassified by Letsinger) 

Brock 5P Catchment bedrock geology, percent Sand and gravel (LOCAL) USGS (Reclassified by Letsinger) 

Brock 6P Catchment bedrock geology, percent Sandstone (LOCAL) USGS (Reclassified by Letsinger) 

Brock 7P Catchment bedrock geology, percent Shale (LOCAL) USGS (Reclassified by Letsinger) 

Brock 1PC Network bedrock geology, percent Carbonate (CUMULATIVE) USGS (Reclassified by Letsinger) 

Brock 2PC Network bedrock geology, percent Felsic (igneous) (CUMULATIVE) USGS (Reclassified by Letsinger) 

Brock 3PC Network bedrock geology, percent Mafic (igneous) (CUMULATIVE) USGS (Reclassified by Letsinger) 

Brock 4PC Network bedrock geology, percent Metamorphic (CUMULATIVE) USGS (Reclassified by Letsinger) 

Brock 5PC Network bedrock geology, percent Sand and gravel (CUMULATIVE) USGS (Reclassified by Letsinger) 

Brock 6PC Network bedrock geology, percent Sandstone (CUMULATIVE) USGS (Reclassified by Letsinger) 

Brock 7PC Network bedrock geology, percent Shale (CUMULATIVE) USGS (Reclassified by Letsinger) 

Soil1p Revised soil hydrologic group code 1 (A, A/D), area (%), catchment STATSGO 

Soil2p Revised soil hydrologic group code 2 (B, B/D), area (%), catchment STATSGO 

Soil3p Revised soil hydrologic group code 3 (C, C/D), area (%), catchment STATSGO 

Soil4p Revised soil hydrologic group code 4 (D), area (%), catchment STATSGO 

Soil1pc Revised soil hydrologic group code 1 (A, A/D), area (%),upstream cumulative STATSGO 



48 | P a g e  

 

Soil2pc Revised soil hydrologic group code 2 (B, B/D), area (%), upstream cumulative STATSGO 

Soil3pc Revised soil hydrologic group code 3 (C, C/D), area (%),upstream cumulative STATSGO 

Soil4pc Revised soil hydrologic group code 4 (D), area (%),upstream cumulative STATSGO 

Surf1p Surficial geology, group code 1 (Till), area (%), catchment USGS 

Surf2p Surficial geology, group code 2 (Outwash), area (%), catchment USGS 

Surf3p Surficial geology, group code 3 (Alluvium), area (%), catchment USGS 

Surf4p Surficial geology, group code 4 (Lacustrine), area (%), catchment USGS 

Surf5p Surficial geology, group code 5 (Loess), area (%), catchment USGS 

Surf6p Surficial geology, group code 6 (Residuum), area (%), catchment USGS 

Surf7p Surficial geology, group code 7 (Clay), area (%), catchment USGS 

Surf8p Surficial geology, group code 8 (Colluvium), area (%), catchment USGS 

Surf1pc Surficial geology, group code 1 (Till), area (%),upstream cumulative USGS 

Surf2pc Surficial geology, group code 2 (Outwash), area (%), upstream cumulative USGS 

Surf3pc Surficial geology, group code 3 (Alluvium), area (%),upstream cumulative  USGS 

Surf4pc Surficial geology, group code 4 (Lacustrine), area (%),upstream cumulative USGS 

Surf5pc Surficial geology, group code 5 (Loess), area (%),upstream cumulative USGS 

Surf6pc Surficial geology, group code 6 (Residuum), area (%),upstream cumulative USGS 

Surf7pc Surficial geology, group code 7 (Clay), area (%),upstream cumulative USGS 

Surf8pc Surficial geology, group code 8 (Colluvium), area (%),upstream cumulative USGS 

DEV_P NLCD 2006, % of developed land cover classes (0 to 100), (NLCD classes 22, 23, 24) NLCD 2006 

AG_P NLCD 2006, % of agricultural land cover classes (0 to 100), (NLCD classes 81, 82) NLCD 2006 

FOR_P NLCD 2006, % of forest land cover classes (0 to 100), (NLCD classes 41,42,43) NLCD 2006 

GRS_P NLCD 2006, % of grassland cover classes (0 to 100), (NLCD classes 71) NLCD 2006 

DEV_PC Network NLCD 2006, % of developed land cover classes (0 to 100), (NLCD classes 22, 23, 24) NLCD 2006 

AG_PC Network NLCD 2006, % of developed land cover classes (0 to 100), (NLCD classes 81, 82) NLCD 2006 

FOR_PC Network NLCD 2006, % of developed land cover classes (0 to 100), (NLCD classes 41,42,43) NLCD 2006 

GRS_PC Network NLCD 2006, % of grassland cover classes (0 to 100), (NLCD class 71) NLCD 2006 

WETLANDP Wetland area, percent of catchment's area (0 to 100%) NWI and GAP wetlands 

WETLANDPC Network wetland area, percent of upstream contributing area (0 to 100%) NWI and GAP wetlands 

RIP_AG Riparian zone in agriculture, percentage, catchment, (0-100), (NLCD classes 81, 82) NLCD, FEMA 

RIP_DEV Riparian zone developed, percentage, catchment, (0-100), (NLCD classes 22, 23, 24) NLCD, FEMA 

RIP_AGC Riparian zone in agriculture, percentage, upstream cumulative, (0-100), (NLCD classes 81, 82) NLCD, FEMA 

RIP_DEVC Riparian zone developed, percentage, upstream cumulative, (0-100), (NLCD classes 22, 23, 24) NLCD, FEMA 

Mine_P Surface mines, percentage, catchment, (0-100) OSM, KOMSL, KYDR 

Mine_PC Surface mines, percentage, upstream cumulative, (0-100) OSM, KOMSL, KYDR 
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N_KGDEN Total estimated N inputs (kg/year), per sq km, catchment USGS 

P_KGDEN Total estimated P inputs (kg/kear), per sq km, catchment USGS 

N_KGDENC Total estimated N inputs (kg/year), per sq km, upstream cumulative USGS 

P_KGDENC Total estimated P inputs (kg/kear), per sq km, upstream cumulative USGS 

BFI_mean Mean baseflow index (catchment) USGS 

BFI_meanc Mean baseflow index (network) USGS 

Water_gw LOCAL: USGS National Atlas of the US: Ground Water Use by COUNTY 2000: Millions gallons per day/km2 NFHAP 

Water_sw LOCAL: USGS National Atlas of the US: Surface Water Use by COUNTY 2000: Millions gallons per day/km2 NFHAP 

Cattle LOCAL: Agricultural Census 2002, 1:2M scale, INTEGER: average number of cattle/acre farmland NFHAP 

Popdens LOCAL: US Population Density 2000, NOAA, scale 1km, #/km2 NFHAP 

Roadcr LOCAL: Census 2000 TIGER Roads, 1:100K scale, road crossings identified by INTERSECT, with points generated, #/km2 NFHAP 

Roadlen LOCAL: Census 2000 TIGER Roads, 1:100K scale, units not given - m/km2 NFHAP 

Dams LOCAL: National Inventory of Dams, 2002-2004, #/km2 NFHAP 

Mines LOCAL: USGS Active Mines and Mineral Processing Plants, 2003, #/km2 NFHAP 

Tri LOCAL: USEPA, 2007: #/km2 Toxics Release Inventory Program sites NFHAP 

Npdes LOCAL: USEPA, 2007: #/km2 National Pollutant Discharge Elimination System sites NFHAP 

Cerc LOCAL: USEPA, 2007: #/km2 Compensation and Liability Information System sites NFHAP 

Water_gwc NETWORK: USGS National Atlas of the US: Ground Water Use by COUNTY 2000: Millions gallons per day/km2 NFHAP 

Water_swc NETWORK: USGS National Atlas of the US: Surface Water Use by COUNTY 2000: Millions gallons per day/km2 NFHAP 

Cattlec NETWORK: Agricultural Census 2002, 1:2M scale, INTEGER: average number of cattle/acre farmland NFHAP 

Popdensc NETWORK: US Population Density 2000, NOAA, scale 1km,  #/km2 NFHAP 

Roadcrc NETWORK: Census 2000 TIGER Roads, 1:100K scale, road crossings identified by INTERSECT, #/km2 NFHAP 

Roadlenc NETWORK: Census 2000 TIGER Roads, 1:100K scale, units not given - m/km2 NFHAP 

Damsc NETWORK: National Inventory of Dams, 2002-2004, #/km2 NFHAP 

Minesc NETWORK: USGS Active Mines and Mineral Processing Plants, 2003, #/km2 NFHAP 

Tric NETWORK: USEPA, 2007: #/km2 Toxics Release Inventory Program sites NFHAP 

Npdesc NETWORK: USEPA, 2007: #/km2 National Pollutant Discharge Elimination System sites NFHAP 

Cercc NETWORK: USEPA, 2007: #/km2 Compensation and Liability Information System sites NFHAP 
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: FUNCTIONAL RESPONSE PLOTS Appendix B

Licking River watershed MBI 
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Muskingum River watershed IBI 
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i http://www2.research.att.com/~phillips/pdf/Elith_et_al_ecography.pdf 

ii http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2656.2008.01390.x/pdf 


